Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (9): 1672-1684.doi: 10.3864/j.issn.0578-1752.2016.09.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Spraying Chemical Topping Agents on Canopy Structure and Canopy Photosynthetic Production in Cotton

YANG Cheng-xun1, ZHANG Wang-feng1, XU Shou-zhen1SUI Long-long1, LIANG Fu-bin1, DONG Heng-yi2   

  1. 1College of Agriculture, Shihezi University/Key Laboratory of Oasis Ecology Agriculture of Xinjiang Production and  Construction Corps, Shihezi 832003, Xinjiang
    2Regimental Farm 149, the Eight Division, Xinjiang Production and Construction Corps, Shihezi 832052, Xinjiang
  • Received:2015-12-07 Online:2016-05-01 Published:2016-05-01

Abstract: 【Objective】 The objectives of this two-year field experiment were to study the effects of two chemical topping agents, Flumetralin and Mepiquat chloride, on the characteristics of plant type, canopy structure, canopy photosynthetic production and yield of cotton and to determine how the changes of canopy structure affect canopy photosynthetic production and yield. The results of this study will provide a theoretical basis for more effective use of chemical topping agents.【Method】The study included two cotton cultivars Xinluzao 45 and Zhangmiansuo 50 and one cotton strain 45-21. Conventional manual topping was used as the control treatment. Plant height, plant width, leaf area index (LAI), leaf chlorophyll contents, canopy light transmittance, canopy apparent photosynthetic rate, and yield components were among the variables that were measured. The effects of chemical topping technology on LAI, canopy light transmittance, canopy apparent photosynthetic rate and yield were studied. 【Result】 Plant height was significantly higher in the chemically-topped treatments than in the manually-topped treatment, plant width was significantly lesser in the chemically-topped treatments than in the manually-topped treatment, and lateral growth was significantly inhibited after spraying. The LAI and leaf chlorophyll contents were greater in the chemically-topped treatments than in the manually-topped treatment, the difference in LAI and leaf chlorophyll contents were extremely significant at the early boll opening stage. Light transmittance in the upper and middle canopy layers was greater in the chemically-topped treatments than in the manually-topped treatment. However, late in the growing season, light transmittance in the lower canopy layers was lesser than in the manually-topped treatment. Leaf chlorophyll contents increased to a maximum and then decreased at the end of the growing season. Chemical topping increased leaf chlorophyll content. Canopy apparent photosynthetic rates were significantly greater in the chemically-topped treatments than in the manually-topped treatment. Furthermore, canopy apparent photosynthetic rates remained high for a longer time in the chemically-topped treatments. At the early boll opening stage, canopy apparent photosynthetic rate in the chemically-topped treatments was 16.04 μmol·m-2·s-1 which was 14.35%-16.40% greater than those in the manually-topped treatment. Canopy respiration rates were significantly greater in the chemically-topped treatments than in the manually-topped treatment during the first part of the season. After reaching a maximum there was no significant difference among the treatments. The ratio of canopy respiration rate to total apparent photosynthetic rate was higher in the chemically-topped treatment than in the manually topped treatment. Chemical topping increased the number of bolls per plant. Cotton yield in the Flumetraline treatment was greater than that in the manually-topped treatment. 【Conclusion】Chemical topping technology can shape plant type and adjust the formation of cotton canopy structure. Compared with manual topping, chemical topping increased the LAI and the leaf chlorophyll content. The LAI and chlorophyll content both remained high for a relatively longer time in the chemically-topped treatments. Chemical topping improved light distribution in the canopy and increased the photosynthetic area, thus ensuring the chemically-topped treatments had the highest canopy apparent photosynthetic rate and the longest duration of photosynthetic activity.

Key words: cotton, chemical topping, canopy structure, canopy photosynthetic production, yield

[1]    孟桂元, 贺再新, 孙焕良, 周清明, 周静. 作物打顶栽培研究进展. 中国农学通报, 2010, 26(24): 144-148.
Meng G Y, He Z X, Sun H L, Zhou Q M, Zhou J. The research progress on topping cultivation in crops. Chinese Agricultural Science Bulletin, 2010, 26(24): 144-148. (in Chinese)
[2]    赵强, 张巨松, 周春江, 恽友兰, 李松林, 田晓莉. 化学打顶对南疆棉花农艺和经济性状的影响. 棉花学报, 2011, 23(4): 329-333.
Zhao Q, Zhang J S, Zhou C J, YUN Y L, Li S L, Tian X L. Chemical detopping increases the optimum plant density in cotton. Cotton Science, 2011, 23(4): 329-333. (in Chinese)
[3]    刘学. 新疆兵团棉花化学打顶整枝技术研究现状及展望. 农药科学与管理, 2013, 34(5): 65-67.
Liu X. Research status and prospects of chemical topping on cotton in Xinjiang production and construction corps. Pesticide Science and Administration, 2013, 34(5): 65-67. (in Chinese)
[4]    Gencsoylu I. Effect of plant growth regulators on agronomic characteristics, lint quality, pests and predators in cotton. Journal of Plant Growth Regulation, 2009, 28: 147-153.
[5]    赵强, 张巨松, 周春江, 恽友兰, 李松林, 田晓莉. 化学打顶对棉花群体容量的拓展效应. 棉花学报, 2011, 23(5): 401-407.
Zhao Q, Zhang J S, Zhou C J, YUN Y L, Li S L, Tian X L. Chemical detopping increases the optimum plant density in cotton. Cotton Science, 2011, 23(5): 401-407. (in Chinese)
[6]    冯国艺, 姚炎帝, 杜明伟, 田景山, 罗宏海, 张亚黎, 张旺锋. 缩节胺(DPC)对干旱区杂交棉冠层结构及群体光合生产的调节. 棉花学报, 2012, 24(1): 44-51.
Feng G Y, Yao Y D, Du M W, Tian J S, Luo H H, Zhang Y L, Zhang W F. Dimethyl piperidinium chloride (DPC) regulation of canopy architecture and photosynthesis in a cotton hybrid in an arid region. Cotton Science, 2012, 24(1): 44-51. (in Chinese)
[7]    李瑞生, 王克利, 刘炳炎. 棉花双株型栽培体系研究初报. 作物杂志, 2007(5): 69-70.
Li R S, Wang K L, Liu B Y. Primary report on cotton double plant cultivation system. Crops, 2007(5): 69-70. (in Chinese)
[8]    Maddonni G A, Otegui M E, Cirilo A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Research, 2001, 71: 183-193.
[9]    Read J J, Reddy K R, Jenkins J N. Yield and fiber quality of up land cotton as influenced by nitrogen and potassium nutrition. European Journal of Agronomy, 2006, 24: 282-290.
[10]   杜明伟, 冯国艺, 姚炎帝, 罗宏海, 张亚黎, 夏东利, 张旺锋. 杂交棉标杂A1和石杂2号超高产冠层特性及其与群体光合生产的关系. 作物学报, 2009, 35(6): 1068-1077.
Du M W, Feng G Y, Yao Y D, Luo H H, Zhang Y L, Xia D L, Zhang W F. Canopy characteristics and its correlation with photosynthesis of super high-yield-ing hybrid cotton Biaoza A1 and Shiza 2. Acta Agronomica Sinica, 2009, 35(6): 1068-1077. (in Chinese)
[11]   杜明伟, 罗宏海, 张亚黎, 姚炎帝, 张旺锋, 夏东利, 马丽, 朱波. 新疆超高产杂交棉光合生产特性研究. 中国农业科学, 2009, 42(6): 1952-1962.
Du M W, Luo H H, Zhang Y L, Yao Y D, Zhang W F, Xia D L, Ma L, Zhu B. Photosynthesis characteristics of super-high-yield hybrid cotton in Xinjiang. Scientia Agricultura Sinica, 2009, 42(6): 1952-1962. (in Chinese)
[12]   Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 2010, 61: 235-261.
[13]   Raines C A. Increasing photosynthetic carbon assimilation in C3 plant to improve crop yield: Current andfuture strategies. Plant Physiology, 2011, 155: 36-42.
[14]   张旺锋, 王振林, 余松烈, 李少昆, 房建, 童文崧. 种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响. 植物生态学报, 2004, 28(2): 164-171.
Zhang W F, Wang Z L, Yu S L, Li S K, Fang J, Dong W S. Effects of planting density on canopy photosynthesis, canopy structure and yield formation of high-yield cotton in Xinjiang, China. Acta Phytoecologica Sinica, 2004, 28(2): 164-171. (in Chinese)
[15]   马富裕, 李蒙春, 杨建荣, 季新疆, 申屠向东, 陶会俊. 花铃期不同时段水分亏缺对棉花群体光合速率及水分利用效率影响的研究. 中国农业科学, 2002, 35(12): 1467-1472.
Ma F Y, Li M C, Yang J R, Ji X J, ShenTu X D, Tao H J. A study of effect of water deficit of three period during cotton anthesis on canopy apparent photosynthesis and WUE. Scientia Agricultura Sinica, 2002, 35(12): 1467-1472. (in Chinese)
[16]   Malone S, Herbert Jr D A, Holshouser D L. Evaluation of the LAI-2000 plant canopy analyzer to estimate leaf area in manually defoliated soybean. Agronomy Journal, 2002, 94: 1012-1019.
[17]   高亮之, 李林. 水稻气象生态. 北京: 中国农业出版社, 1992.
Gao L Z, Li L. Rice Meteoric Ecology. Beijing: China Agriculture Press, 1992. (in Chinese)
[18]   马富裕, 张旺锋, 李锦辉, 张勇, 刘莉君. 棉花群体光合作用测定方法探讨. 石河子大学学报(自然科学版), 1998(增刊): 46-50.
Ma F Y, Zhang W F, Li J H, Zhang Y, Liu L J. The discussion of the measuring method of cotton canopy apparent photosynthesis (CAP). Journal of Shihezi University (Natural Science), 1998 (Suppl.): 46-50. (in Chinese)
[19]   Lichtenthaler H K. Chlorophylls and carotenoids pigments of photosynthetic biomembranes. Methods Enzymology, 1987, 148: 350-382.
[20]   Boedhram N, Arkebauer T J, Batchelor W D. Season-long characterization of vertical distribution of leaf area in corn. Agronomy Journal, 2001, 93: 1235-1242.
[21]   Subedi K D, Ma B L. Ear position, leaf area, and contribution of individual leaves to grain yield in conventional and leafy maize hybrids. Crop Science, 2005, 45: 2246-2257.
[22]   张旺锋, 王振林, 余松烈, 李少昆, 曹连莆, 任丽彤. 膜下滴灌对新疆高产棉花群体光合作用冠层结构和产量形成的影响. 中国农业科学, 2002, 35(2): 632-637.
Zhang W F, Wang Z L, Yu S L, Li S K, Cao L P, Ren L T. Effect of under mulch-drip irrigation on canopy apparent photosynthesis, canopy structure and yield formation in high-yield cotton of Xinjiang. Scientia Agricultura Sinica, 2002, 35(2): 632-637. (in Chinese)
[23]   冯国艺, 姚炎帝, 罗宏海, 张亚黎, 杜明伟, 张旺锋, 夏冬利, 董恒义. 新疆超高产棉花冠层光分布特征及其与群体光合生产的关系. 应用生态学报, 2012, 5: 1286-1294.
Feng G Y, Yao Y D, Luo H H, Zhang Y L, Du M W, Zhang W F, Xia D L, Dong H Y. Canopy light distribution and its correlation with photosynthetic production in super-high yielding cotton fields of Xinjiang. Northwest China. Chinese Journal of Applied Ecology, 2012, 5: 1286-1294. (in Chinese)
[24]   隋娜, 李萌, 田纪春, 孟庆伟, 赵世杰. 超高产小麦品种(系)生育后期光合特性的研究. 作物学报, 2005, 31(6): 808-814.
Sui N, Li M, Tian J C, Meng Q W, Zhao S J. Photosynthetic characteristics of super high yield wheat cultivars at late growth geriod. Acta Agronomica Sinica, 2005, 31(6): 808-814. (in Chinese)
[25]   杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006, 39(7): 1336-1345.
Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Growth and development characteristics of super-high-yielding mid-season japonica rice. Scientia Agricultura Sinica, 2006, 39(7): 1336-1345. (in Chinese)
[26]   张洪程, 吴桂成, 李德剑, 肖跃成, 龚金龙, 李杰, 戴其根, 霍中 洋, 许轲, 高辉, 魏海燕, 沙安勤, 周有炎, 王宝金, 吴爱国. 杂交粳稻13.5t hm-2超高产群体动态特征及形成机制的探讨. 作物学报, 2010, 36(9): 1547-1558.
Zhang H C, Wu G C, Li D J, Xiao Q C, Gong J L, Li J, Dai Q G, Huo Z Y, Xu K, Gao H, WEi H Y, Sha A Q, Zhou Y Y, Wang B J, Wu A G. Population characteristics and formation mechanism for super-high-yielding hybrid japonica rice (13.5 t hm-2). Acta Agronomica Sinica, 2010, 36(9): 1547-1558. (in Chinese)
[27]   陈传永, 侯海鹏, 李强, 朱平, 张振勇, 董志强, 赵明. 种植密度对不同玉米品种叶片光合特性与碳、氮变化的影响. 作物学报, 2010, 36(5): 871-878.
Chen C Y, Hou H P, LI Q, Zhu P, Zhang Z Y, Dong Z Q, Zhao M. Effects of panting density on photosynthetic characteristics and changes of carbon and nitrogen in leaf of different corn hybrids. Acta Agronomica Sinica, 2010, 36(5): 871-878. (in Chinese)
[28]   曹卫东, 贾继增, 金继运. 不同供氮水平下小麦苗期叶绿素含量的QTL及互作研究. 植物营养与肥料学报, 2004, 10(5): 473-478.
Cao W D, Jia J Z, Jin J Y. Identification and interaction analysis of QTL for chlorophrll content in wheat seedings. Plant Nutrition and Fertilizer Science, 2004, 10(5): 473-478. (in Chinese)
[29]   Bange M P, Miroy S P. Timing of crop maturity in cotton: Impact of dry matter production and partitioning. Field Crops Research, 2000, 68(2): 143-155.
[30]   Verma V, Foulkes M J, Worland A J, Sylvester- Bradley R, Caligari P D S, Snape J W. Mapping quantitative trait loci for leaf senescence as a yield determinant in winter wheat under optical and drought-stressed environments. Euphytica, 2004, 135: 255-263.
[31]   杨国敏, 孙淑娟, 周勋波, 陈雨海, 齐林, 高会军, 刘岩. 群体分布和灌溉对冬小麦农田光能利用的影响. 应用生态学报, 2009, 8: 1868-1875.
Yang G M, Sun S J, Zhou X B, Chen Y H, Qi L, Gao H J, Liu Y. Effects of population distribution pattern and irrigation schedule on radiation utilization in winter wheat farm land. Chinese Journal of Applied Ecology, 2009, 8: 1868-1875. (in Chinese)
[32]   周勋波, 杨国敏, 孙淑娟, 陈雨海. 不同株行距配置对夏大豆群体结构及光截获的影响. 生态学报, 2010, 3: 691-697.
Zhou X B, Yang G M, Sun S J, Chen Y H. Effect of different plant-row spacing on population structure and PAR interception in summer soybean. Acta Ecologica Sinica, 2010, 3: 691-697. (in Chinese)
[33]   陈源, 顾万荣, 王汝利, 陈德华, 王余龙, 吴云康. 棉花叶系质量划分及叶层配置的研究. 棉花学报, 2004, 16(5): 313-318.
Chen Y, Gu W R, Wang R L, Chen D H, Wang Y L, Wu Y K. Studies on classification of the leaf systematic quality and leaf area distribution in cotton. Cotton Science, 2004, 16(5): 313-318. (in Chinese)
[34]   张巨松, 陈冰, 周抑强, 张勇, 孙国华, 侯玲. DPC对棉花群体发育调控效应的研究. 新疆农业大学学报, 1999, 22(1): 19-23.
Zhang J S, Chen B, Zhou Y Q, Zhang Y, Sun G H, Hou L. Regulating effect of DPC on cotton population development. Journal of Xinjiang Agricultural University, 1999, 22(1): 19-23. (in Chinese)
[35]   孟兆江, 卞新民, 刘安能, 庞鸿宾, 王和洲. 调亏灌溉对棉花生长发育及其产量和品质的影响. 棉花学报, 2008, 1: 39-44.
Meng Z J, Bian X M, Liu A N, Pang H B, Wang H Z. Effect of regulated deficit irrigation on growth and development characteristics in cotton and its yield and fiber quality. Cotton Science, 2008, 1: 39-44. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[7] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[8] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[9] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[10] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[11] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[12] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[13] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[14] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
[15] WEN Ming, LI MingHua, JIANG JiaLe, MA XueHua, LI RongWang, ZHAO WenQing, CUI Jing, LIU Yang, MA FuYu. Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(16): 3473-3487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!