Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (1): 155-162.doi: 10.3864/j.issn.0578-1752.2016.01.014
• STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles Next Articles
LIU Gong-ming1, SUN Jing-xin1, LI Peng1, XU Xing-lian2, ZHANG Wan-gang2, HUANG Ming2, ZHOU Guang-hong2
[1] Walton J H, Mccarthy J M. New method for determining internal temperature of cooking meat via NMR spectroscopy. Journal of Food Process Engineering, 1999, 22(4): 319-330. [2] Felício M T, Ramalheira R, Ferreira V, Brandão T, Silva J, Hogg T, Teixeira P. Thermal inactivation of Listeria monocytogenes from alheiras, traditional Portuguese sausage during cooking. Food Control, 2011, 22(12): 1960-1964.
[3] Parsons S E, Patterson R L S. Assessment of the previous heat treatment given to meat products in the temperature range 40-90℃. Part 1: Soluble nitrogen analysis. Journal of Food Technology, 1986, 21(5): 117-122.
[4] Sharen S C, Jimmy T K, Smith S B. Lactate dehydrogenase activity in bovine muscle as a means of determining heating endpoint. Journal of Food Science, 1991, 56(4): 895-898.
[5] Musleh U, Shoichiro I, Munehiko T. Coagulation test for determining endpoint temperature of heated blue marlin meat. Fisheries Science, 2000, 66(1): 153-160.
[6] Wang C H, Pestka J J, Booren A M, Smith D M. Lactate dehydrogenase, serum protein, and immunoglobulin G content of uncured turkey thigh rolls as influenced by endpoint cooking temperature. Journal of Agriculture and Food Chemistry, 1994, 42(8): 1829-1833.
[7] Hsu Y C, Sair A I, Booren A M, Smith D M. Triose phosphate isomerase as an endogenous time-temperature integrator to verify adequacy of roast beef processing. Journal of Food Science, 2000, 65(2): 236-240.
[8] 贺艳, 郑文杰, 刘煊, 赵卫东, 何晨光. 牛肉加热终点温度指示蛋白的筛选. 食品研究与开发, 2006, 27(4): 22-23.
He Y, Zheng W J, Liu X, Zhao W D, He C G. Identification of indicators of endpoint temperature of meat and its product. Food Research and Development, 2006, 27(4): 22-23. (in Chinese)
[9] 刘伟, 贾晓川, 赵良娟, 贺艳, 张宏伟, 郑文杰. 猪、牛肉加热终点温度检测方法的研究. 食品研究与开发, 2012, 33(6): 147-150.
Liu W, Jia X C, Zhao L J, He Y, Zhang H W, Zheng W J. Establishment of assay for endpoint temperature of bovine and pork. Food Research and Development, 2012, 33(6): 147-150. (in Chinese)
[10] 贺艳, 郑文杰, 邓为民, 何晨光, 刘烜, 赵卫东. 猪牛肉加热终点温度酶联免疫检测方法的建立. 食品研究与开发, 2007, 28(6): 118-121.
He Y, Zheng W J, Deng W M, He C G, Liu H, Zhao W D. Establishment of enzyme-linked immunosobent assay for endpoint temperature of bovine and pork. Food Research and Development, 2007, 28(6): 118-121. (in Chinese)
[11] 贺艳, 郑文杰, 刘煊, 赵卫东. 酶联免疫方法在牛肉加热终点温度检测中的应用. 食品科技, 2007(6): 207-209.
He Y, Zheng W J, Liu X, Zhao W D. Enzyme-linked immunosobent assay for bovine muscle’s endpoint temperature. Food Science and Technology, 2007(6): 207-209. (in Chinese)
[12] Hsieh Y H P, Zhang S, Chen F C, Sheu S C. Monoclonal antibody- based ELISA for assessment of endpoint heating temperature of ground pork and beef. Journal of Food Science, 2002, 67(3): 1149-1154.
[13] 毛毛, 高宏伟, 梁成珠, 汪东风. 薄层等电聚焦电泳法检测动物源食品加热终点温度. 食品科技, 2009, 34(1): 239-242.
Mao M, Gao H W, Liang C Z, Wang D F. Detection heating endpoint temperature of animal derived food by TLC isoelectric electrophoresis. Food Science and Technology, 2009, 34(1): 239-242. (in Chinese)
[14] 毛毛, 高宏伟, 梁成珠, 汪东风. 微流芯片分离技术检测烘烤鸡肉源食品热处理终点温度. 食品工业科技, 2009, 30(10): 101-106.
Mao M, Gao H W, Liang C Z, Wang D F. Study on detecting the heating endpoint temperature of the denatured protein in roasted chicken by microfluidic technology. Science and Technology of Food Industry, 2009, 30(10): 101-106. (in Chinese)
[15] 毛毛, 高宏伟, 梁成珠, 汪东风. SDS-PAGE电泳法检测鱼肉热处理终点温度. 中国食品学报, 2009, 9(6): 164-169.
Mao M, Gao H W, Liang C Z, Wang D F. Detection of heating endpoint temperature for fish by SDS-PAGE method. Journal of Chinese Institute of Food Science and Technology, 2009, 9(6): 164-169. (in Chinese)
[16] 刘功明, 孙京新, 徐幸莲, 黄明, 李鹏. 差示扫描量热法检测猪、牛、羊肉加热终点温度. 中国农业科学, 2015, 48(6): 1186-1194.
Liu G M, Sun J X, Xu X L, Huang M, Li P. Detection of endpoint temperature of pork, beef and mutton by differential scanning calorimetry. Scientia Agricultura Sinica, 2015, 48(6): 1186-1194. (in Chinese)
[17] Svein K S, Agnar H S, Karsten H D, Dagbjorn S. Endpoint temperature of heat-treated surimi can be measured by visible spectroscopy. Food Control, 2012, 26(1): 92-97.
[18] Berhe D T, Lawaetz A J, Engelsen S B, Hviid M S, Lametsch R. Accurate determination of endpoint temperature of cooked meat after storage by Raman spectroscopy and chemometrics. Food Control, 2015, 52: 119-125.
[19] Huang H B, Yu H Y, Xu H R, Ying Y B. Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review. Journal of Food Engineering, 2008, 87(3): 303-313.
[20] 张仲源, 刘静, 管骁, 杨永健, 杨彩霞. 近红外光谱分析技术在食品检测中的应用研究进展. 食品与发酵工业, 2011, 37(11): 159-165.
Zhang Z Y, Liu Y, Guan X, Yang Y J, Yang C X. Research progress of application of near-infrared spectroscopy in food analysis. Food and Fermentation Industries, 2011, 37(11): 159-165. (in Chinese)
[21] 徐霞, 成芳, 应义斌. 近红外光谱技术在肉品检测中的应用和研究进展. 光谱学与光谱分析, 2009, 29(7): 1876-1880.
Xu X, Cheng F, Ying Y B. Application and recent development of research on near-infrared spectroscopy for meat quality evaluation. Spectroscopy and Spectral Analysis, 2009, 29(7): 1876-1880. (in Chinese)
[22] Ellekjare M R, Isaksson T. Assessments of maximum cooking temperatures in previously heat treated beef. Part 1: Near infrared spectroscopy. Journal of the Science of Food and Agriculture, 1992, 59(3): 335-343.
[23] Thyholt K, Enersen G, Isaksson T. Determination of endpoint temperatures in previously heat treated beef using reflectance spectroscopy. Meat Science, 1998, 48(1): 49-63.
[24] Uddin M, Ishizaki S, Okazaki E, Tanaka M. Near-infrared reflectance spectroscopy for determining end-point temperature of heated fish and shellfish meats. Journal of the Science of Food and Agriculture, 2002, 82(3): 286-292.
[25] Uddin M, Okazaki E, Ahmad M U, Fukuda Y, Tanaka M. Noninvasive NIR spectroscopy to verify endpoint temperature of kamaboko gel. LWT-Food Science and Technology, 2005, 38(8): 809-814.
[26] 孟一, 张玉华, 许丽丹, 陈东杰, 张应龙, 张咏梅. 近红外光谱技术对猪肉注水、注胶的快速检测. 食品科学, 2014, 35(8): 299-303.
Meng Y, Zhang Y H, Xu L D, Chen D J, Yang Y L, Zhang Y M. Rapid detection of meat injected with water or gum by near infrared spectroscopy. Food Science, 2014, 35(8): 299-303. (in Chinese)
[27] Uddin M, Okazaki E, Ahmad M U, Fukuda Y, Tanaka M. NIR spectroscopy: A non-destructive fast technique to verify heat treatment of fish-meat gel. Food Control, 2006, 17(8): 660-664.
[28] Uddin M, Okazaki E. Classification of fresh and frozen-thawed fish by near-infrared spectroscopy. Journal of Food Science, 2004, 69(8): C665-C668.
[29] Berhe D T, Engelsen S B, Hviid M S, Lametsch R. Raman spectroscopic study of effect of the cooking temperature and time on meat proteins. Food Research International, 2014, 66: 123-131. |
[1] | TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138. |
[2] | SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601. |
[3] | ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968. |
[4] | TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780. |
[5] | HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538. |
[6] | WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549. |
[7] | GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861. |
[8] | YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684. |
[9] | ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026. |
[10] | WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771. |
[11] | YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279. |
[12] | TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315. |
[13] | ZHU Mo,ZHENG MaiQing,CUI HuanXian,ZHAO GuiPing,LIU Yang. Comparison of Genomic Prediction Accuracy for Meat Type Chicken Carcass Traits Based on GBLUP and BayesB Method [J]. Scientia Agricultura Sinica, 2021, 54(23): 5125-5131. |
[14] | YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242. |
[15] | ZHU XingHao,CHEN Qing,SHAO BingHao,GUO YuJun,ZHANG XiangLi,DU PengFei,ZHU Yao,HUANG YanQun,CHEN Wen. Effect of the Heterozygous Sex-Linked Dwarf Gene on Fat Deposition in Normal Type Chickens [J]. Scientia Agricultura Sinica, 2021, 54(1): 213-223. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 321
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 256
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|