Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (19): 3887-3898.doi: 10.3864/j.issn.0578-1752.2015.19.011

• HORTICULTURE • Previous Articles     Next Articles

Establishment of Molecular ID for Some Apple Germplasm Resources

GAO Yuan, LIU Feng-zhi, WANG Kun, WANG Da-jiang, GONG Xin, LIU Li-jun   

  1. Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Ministry of Agriculture, Xingcheng 125100, Liaoning
  • Received:2015-04-13 Online:2015-10-01 Published:2015-10-01

Abstract: 【Objective】 A total of 131 apple germplasms including landraces, bred cultivars and related species selected from the National Repository of Pear and Apple Germplasm Resources in Xingcheng, China were studied with tailed primer M13 microsatellite markers (TP-M13-SSR). An analysis was made to establish the molecular ID of 131 apple germplasms.【Method】Based on genetic fingerprints, germplasms were distinguished with selected SSR markers, alleles that were amplified by each marker were coded, then was combined as a molecular ID.【Result】Two accessions selected from a total of 131 accessions were used for optimization of the first PCR detecting conditions and SSR primer screening. 16 pairs of TP-M13-SSR primers with high stability and good repeatability were used to establish the fingerprints of 131 accessions of Malus Mill.. By using 16 selected SSR markers, 326 polymorphic sites were detected with a mean value of 20.3. The amplification of CH05d04 for all germplasms obtained 49 alleles with the highest expected heterozygosity 0.878, and the amplification of CH01f07a for all germplasms obtained 48 alleles. The polymorphism information content was calculated by PopGen32 with 0.7558 on average. 16 SSR markers could distinguish 11 accessions at least, 71 accessions at most, and 49 accessions on average. The identified rate was 8.09%-52.21%. The identified rate of CH01f07a was the highest, and the identified rate of BGT23b was the lowest. Based on the PIC of amplification and identified rate, each parir of two SSR primers was combined together to identify all the accessions. The combination of CH04h02 and CH01f07a could distinguish 120 accessions at most. More SSR primers were combined together. Finally three SSR primers could distinguish all the accessions. All the alleles of the three core SSR markers were sequenced from small to large, and the assignment was from number 01. A character string was constituted by combining all the codes of the three primers for every accession. By using barcode technology molecular ID can be transferred into a barcode ID that can be quickly scanned by machine.【Conclusion】Based on the PIC of amplification and identified rate, core SSR primers can be screened out to distinguish all the landraces, bred cultivars, and related species. And by constructing fingerprints, every apple germplasm obtains its differentiable molecular ID that can be recognized by the machine. The purpose was to distinguish the most apple germplasms by using the least and the most specific primers.

Key words: apple(Malus Mill.), germplasm resources, TP-M13-SSR, molecular ID

[1]    俞德俊. 中国果树分类学. 北京: 中国农业出版社, 1979: 2-81.
Yu D J. Taxonomy of China Fruits. Beijing: China Agriculture Press, 1979: 2-81. (in Chinese)
[2]    董玉琛, 刘旭. 中国作物及其野生近缘植物: 果树卷. 北京: 中国农业出版社, 2006: 55-84.
Dong Y C, Liu X. Crops and Their Wild Relatives in China: Vol. Fruit Crops. Beijing: China Agriculture Press, 2006: 55-84. (in Chinese)
[3]    李育农, 李晓林. 苹果属植物过氧化物酶同工酶酶谱的研究. 西南农业大学学报, 1995, 17(5): 371-377.
Li Y N, Li X L. Research on peroxidase isozyme in Malus Mill. Journal of Southwest Agricultural University, 1995, 17(5): 371-377. (in Chinese)
[4]    史燕山, 骆建霞. 苹果元帅系品种过氧化物酶同工酶酶谱的比较. 天津农学院学报, 1995, 1: 11-14.
Shi Y S, Luo J X. Comparison of peroxidese zymogrames of “Delicious” apple cultivers. Journal of Tianjin Agricultural College, 1995, 1: 11-14. (in Chinese)
[5]    王爱德, 李天忠, 许雪峰, 韩振海. 苹果品种的SSR分析. 园艺学报, 2005, 32(5): 875-877.
Wang A D, Li T Z, Xu X F, Han Z H. SSR analysis for apple cultivars. Acta Horticulturae Sinica, 2005, 32(5): 875-877. (in Chinese)
[6]    祝军, 王涛, 赵玉军, 张文, 李光晨. 应用AFLP分子标记鉴定苹果品种. 园艺学报, 2007, 27(2): 102-106.
Zhu J, Wang T, Zhao Y J, Zhang W, Li G C. Identification of apple varieties with AFLP molecular markers. Acta Horiculture Sinica, 2007, 27(2): 102-106. (in Chinese)
[7]    高源, 刘凤之, 曹玉芬, 王昆. 苹果属种质资源亲缘关系的SSR分析. 果树学报, 2007, 24(2): 129-134.
Gao Y, Liu F Z, Cao Y F, Wang K. SSR analysis of genetic relationship for apple germplasm resources. Journal of Fruit Science, 2007, 24(2): 129-134. (in Chinese)
[8]    高源, 王昆, 田路明, 曹玉芬, 刘凤之. 应用TP-M13-SSR技术鉴定苹果品种. 果树学报, 2010, 27(5): 833-837.
Gao Y, Wang K, Tian L M, Cao Y F, Liu F Z. Identification of apple cultivars by TP-M13-SSR technique. Journal of Fruit Science, 2010, 27(5): 833-837. (in Chinese)
[9]    Scheulke M. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 2000, 18: 233-234.
[10]   李会勇, 王天宇, 黎裕, 石云素, 宋艳春, 陆平. TP-M13自动荧光检测法在高粱SSR基因型鉴定中的应用. 植物遗传资源学报, 2005, 6(1): 68-70.
Li H Y, Wang T Y, Li Y, Shi Y S, Song Y C, Lu P. Application of the TP-M13 automated fluorescent-lablled system of SSR genotyping in sorghum. Journal of Plant Genetic Resources, 2005, 6(1): 68-70. (in Chinese)
[11]   王壮伟, 赵密珍, 袁骥, 吴伟民, 钱亚明. 38 个欧美草莓栽培品种SSR指纹图谱的构建. 果树学报, 2011, 28(6): 1032-1037.
Wang Z W, Zhao M Z, Yuan J, Wu W M, Qian Y M. Establishment of SSR fingerprinting database for 38 cultivars of strawberry (Fragaria ananassa) native to Europe and America. Journal of Fruit Science, 2011, 28(6): 1032-1037. (in Chinese)
[12]   徐雷锋, 葛亮, 袁素霞, 任君芳, 袁迎迎, 李雅男, 刘春, 明军. 利用荧光标记SSR构建百合种质资源分子身份证. 园艺学报, 2014, 41(10): 2055-2064.
Xu L F, Ge L, Yuan S X, Ren J F, Yuan Y Y, Li Y N, Liu C, Ming J. Using the fluorescent labeled SSR markers to establish molecular identity of Lily germplasms. Acta Horiculture Sinica, 2014, 41(10): 2055-2064. (in Chinese)
[13]   陈昌文, 曹珂, 王力荣, 朱更瑞, 方伟超. 中国桃主要品种资源及其野生近缘种的分子身份证构建. 中国农业科学, 2011, 44(10): 2081-2093.
Chen C W, Cao K, Wang L R, Zhu G R, Fang W C. Molecular ID establishment of main China peach varieties and peach related species. Scientia Agricultura Sinica, 2011, 44(10): 2081-2093. (in Chinese)
[14]   高运来, 朱荣胜, 刘春燕, 李文福, 蒋洪蔚, 李灿东, 姚丙晨, 胡国华, 陈庆山. 黑龙江部分大豆品种分子ID 的构建. 作物学报, 2009, 35(2): 211-218.
Gao Y L, Zhu R S, Liu C Y, Li W F, Jiang H W, Li C D, Yao B C, Hu G H, Chen Q S. Establishment of molecular ID in soybean varieties in Heilongjiang, China. Acta Agronomica Sinica, 2009, 35(2): 211-218. (in Chinese)
[15]   杨阳, 刘振, 赵洋, 梁国强. 湖南省主要茶树品种分子指纹图谱的构建. 茶叶科学, 2010, 30(5): 367-373.
Yang Y, Liu Z, Zhao Y, Liang G Q. Construction of DNA fingerprints for tea cultivars originated from Hunan province. Journal of Tea Science, 2010, 30(5): 367-373. (in Chinese)
[16]   刘新龙, 马丽, 陈学宽, 应雄美, 蔡青, 刘家勇, 吴才文. 云南甘蔗自育品种DNA指纹身份证构建. 作物学报, 2010, 36(2): 202-210.
Liu X L, Ma L, Chen X K, Ying X M, Cai Q, Liu J Y, Wu C W. Establishment of DNA fingerprint ID in sugarcane cultivars in Yunnan. Acta Agronomica Sinica, 2010, 36(2): 202-210. (in Chinese)
[17]   Pan Y B. Databasing molecular identities of sugarcane (Saccharum spp.) clones constructed with microsatellite (SSR) DNA markers. American Journal of Plant Sciences, 2010, 1(2): 87-94.
[18]   王晓飞, 陈建华, 栾明宝, 祁建民, 许英, 孙志民. 苎麻种质资源分子身份证构建的初步研究. 植物遗传资源学报, 2010, 11(6): 802-805.
Wang X F, Chen J H, Luan M B, Qi J M, Xu Y, Sun Z M. Establishment of molecular identification in ramie germplasms. Journal of Plant Genetic Resources (in Chinese), 2010, 11(6): 802-805.
[19]   王黎明, 焦少杰, 姜艳喜, 严洪冬, 苏德峰, 孙广全. 142份甜高粱品种的分子身份证构建. 作物学报, 2011, 37(11): 1975-1983.
Wang L M, Jiao S J, Jiang Y X, Yan H D, Su D F, Sun G Q. Establishment of molecular identity in 142 sweet sorghum varieties. Acta Agronomica Sinica, 2011, 37(11): 1975-1983. (in Chinese)
[20]   颜静宛, 田大刚, 许彦, 王锋. 杂交稻主要亲本的SSR分子身份证数据库的构建. 福建农业学报, 2011, 26(2): 148-152.
Yan J W, Tian D G, Xu Y, Wang F. Constructing SSR molecular database for identity system of hybrid rice parents. Fujian Journal of Agricultural Sciences, 2011, 26(2): 148-152. (in Chinese)
[21]   Ohtsubo K, Nakamura S. Cultivar identification of rice (Oryza sativa L.) by polymerase chain reaction method and its application to processed rice products. Journal of Agricultural and Food Chemistry, 2007, 55(4): 1501-1509.
[22]   邱杨, 李锡香, 李清霞, 陈亦辰, 沈镝, 王海平, 宋江萍. 利用SSR标记构建萝卜种质资源分子身份证. 植物遗传资源学报, 2014, 15(3): 648-654.
Qiu Y, Li X X, Li Q X, Chen Y C, Shen D, Wang H P, Song J P. Establishment of the molecular identification for radish germplasm using SSR markers. Journal of Plant Genetic Resources, 2014, 15(3): 648-654. (in Chinese)
[23]   刘倩, 戴志刚, 陈基权, 温岚, 龚友才, 粟建光. 应用SRAP分子标记构建红麻种质资源分子身份证. 中国农业科学, 2013, 46(10): 1974-1983.
Liu Q, Dai Z G, Chen J Q, Wen L, Gong Y C, Su J G.. Establishment of molecular identity for kenaf germplasm using SRAP marker. Scientia Agricultura Sinica, 2013, 46(10): 1974-1983. (in Chinese)
[24]   艾呈祥, 张力思, 魏海蓉, 苑克俊, 金松南, 刘庆忠. 甜樱桃品种SSR指纹图谱数据库的建立. 中国农学通报, 2007, 23(5): 55-58.
Ai C X, Zhang L S, Wei H R, Yuan K J, Jin S N, Liu Q Z. Construction of molecular fingerprinting database for sweet cherry using SSR markers. Chinese Agricultural Science Bulletin, 2007, 23(5): 55-58. (in Chinese)
[25]   杜晶晶, 刘国银, 魏军亚, 刘德兵, 杨小振. 基于SSR标记构建葡萄种质资源分子身份证. 植物研究, 2013, 33(2): 232 -237.
Du J J, Liu G Y, Wei J Y, Liu D B, Yang X Z. Establishment of molecular ID for grape germplasm based on SSR markers. Bulletin of Botanical Research, 2013, 33(2): 232 -237. (in Chinese)
[26]   张靖国, 田瑞, 陈启亮, 杨晓平, 胡红菊. 基于SSR标记的梨栽培品种分子身份证的构建. 华中农业大学学报, 2014, 33(1): 12-17.
Zhang J G, Tian R, Chen Q L, Yang X P, Hu H J. Establishment of molecular ID for pear cultivars based on SSR markers. Journal of Huazhong Agricultural University, 2014, 33(1): 12-17. (in Chinese)
[27]   Moriya S, Iwanami H, Okada K, Yamamoto T, Abe K. A practical method for apple cultivar identification and parent-offspring analysis using simple sequence repeat markers. Euphytica, 2011, 177(1): 135-150.
[28]   王立新, 张小军, 史星云, 高华, 赵政阳. 苹果栽培品种SSR指纹图谱的构建. 果树学报, 2012, 29(6): 971-977.
Wang L X, Zhang X J, Shi X Y, Gao H, Zhao Z Y. Establishment of SSR fingerprinting database on major apple (Malus ×Domestica) cultivars. Journal of Fruit Science, 2012, 29(6): 971-977. (in Chinese)
[29]   高源, 王昆, 刘凤之, 聂继云, 王大江, 龚欣, 刘立军. 适宜加工用苹果品种 TP-M13-SSR 指纹图谱构建及遗传关系分析. 园艺学报, 2014, 41(5): 946-956.
Gao Y, Wang K, Liu F Z, Nie J Y, Wang D J, Gong X, Liu L J. Establishment of TP-M13-SSR fingerprints and analysis of genetic relationship for 44 processing apple cultivars. Acta Horiculture Sinica (in Chinese), 2014, 41(5): 946-956.
[30] Liebhard R, Gianfrancechi L, Koller B, Ryder C D, Tarchini R, Vandeweg E, Gessler C. Development and characterization of 140 new microsatellites in apple (Malus×domestica Borkh.). Molecular Breeding, 2002, 10: 217-241.
[31]   Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N. Simple sequence repeats for genetic analysis in pear. Euphytica, 2002, 124: 129-137.
[32]   Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N. Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Molecular Ecology Notes, 2002, 2: 14-16.
[33]   郝晨阳, 王兰芬, 贾继增, 董玉琛, 张学勇. SSR荧光标记和银染技术的比较分析. 作物学报, 2005, 31(2): 144-149.
Hao C Y, Wang L F, Jia J Z, Dong Y C, Zhang X Y. Comparison of fluorescence and silver-staining detection systems of microsatellite markers. Acta Agronomica Sinica, 2005, 31(2): 144-149. (in Chinese)
[34]   李莉, 杨剑波, Mackill D J, Colowit P M. 水稻SSR不同检测和分析方法的比较研究. 中国水稻科学, 2000, 14(3): 185-188.
Li L, Yang J B, Mackill D J, Colowit P M. Comparison of different detection methods for rice SSR analysis. Chinese Journal of Rice Science, 2000, 14(3): 185-188. (in Chinese)
[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[3] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[4] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[5] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[6] YongChao HAN,XiangGuo ZENG,FaYun XIANG,Cong GUO,QingHua ZHANG,FengYing CHEN,Wei GUAN. In vitro Evaluation of Strawberry Germplasm Resources for Resistance to Anthracnose [J]. Scientia Agricultura Sinica, 2019, 52(20): 3585-3594.
[7] ZHANG Ying, CAO YuFen, HUO HongLiang, XU JiaYu, TIAN LuMing, DONG XingGuang, QI Dan, ZHANG XiaoShuang, LIU Chao, WANG LiDong. Diversity of Pear Germplasm Resources Based on Twig and Leaf Phenotypic Traits [J]. Scientia Agricultura Sinica, 2018, 51(17): 3353-3369.
[8] CHEN YanQing, CAO YongSheng, CHEN LiNa, FANG Wei . A Spatial Partition Statistical Analysis for Quality and Agronomic Traits of Foxtail Millet Germplasm Resources [J]. Scientia Agricultura Sinica, 2017, 50(14): 2658-2669.
[9] LIU YanYang, MEI HongXian, DU ZhenWei, WU Ke, ZHENG YongZhan, CUI XiangHua, ZHENG Lei. Construction of Core Collection of Sesame Based on Phenotype and Molecular Markers [J]. Scientia Agricultura Sinica, 2017, 50(13): 2433-2441.
[10] CONG Chun-sheng, LI Yong-xiang, LI Chun-hui, SHI Yun-su, SONG Yan-chun, ZHANG Deng-feng, LI Yu, WANG Tian-yu. Research on Methodology of Maize Germplasm Development with Source of Hybrids by Using Marker-Assisted Selection [J]. Scientia Agricultura Sinica, 2016, 49(20): 3874-3885.
[11] CHEN Li-na, FANG Wei, SI Hai-ping, CHEN Yan-qing, CAO Yong-sheng. A Service Performance Evaluation System of National Crop Germplasm Resources Infrastructure [J]. Scientia Agricultura Sinica, 2016, 49(13): 2459-2468.
[12] ZONG Xu-xiao,GUAN Jian-ping,WANG Hai-fei,MA Yu
. Population Structure and Genetic Diversity of Global Pea (Pisum sativum L.) Germplasm Resources
[J]. Scientia Agricultura Sinica, 2010, 43(2): 240-251 .
[13] SUN Chun-qing,CHEN Fa-di,FANG Wei-min,LIU Zhao-lei,TENG Nian-jun
. Advances in Research on Distant Hybridization of Chrysanthemum#br# [J]. Scientia Agricultura Sinica, 2010, 43(12): 2508-2517 .
[14] . A Study on Variability of Fat-related Traits in Cultivated and Wild Soybean Germplasm in China [J]. Scientia Agricultura Sinica, 2008, 41(5): 1283-1290 .
[15]

. [J]. Scientia Agricultura Sinica, 2008, 41(11): 3822-3830 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!