Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (2): 229-240.doi: 10.3864/j.issn.0578-1752.2015.02.03

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

To Make Biofuel: Cutting the Lignin or Loosening Lignin’s Grip?

WANG Xiao-juan1,2, YANG Yang1, ZHANG Xiao-qiang1, JIANG Shao-jun1, SONG Yu1, ZHOU Hai-chen1, JIN Liang1,2   

  1. 1School of Pastoral Agriculture Science and Technology, Lanzhou University/State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou 730020
    2Shanghai Museum of Natural History, Shanghai Science and Technology Museum, Shanghai 200127
  • Received:2014-06-13 Online:2015-01-16 Published:2015-01-16

Abstract: Biomass energy from renewable resources has been considered an alternative source of energy, and the growing contribution of biomass to the world energy also gives a new way to solve the problems such as global warming, the soaring fuel costs and environmental pollution. Lignocellulose is the main component of plant cell walls and is also one of the most abundant renewable resources on earth. Lignocellulosic biomass is principally composed of cellulose, hemicellulose and lignin, which can be converted into liquid biofuels such as bioethanol. The linkages between lignin and carbohydrates (hemicellulose and cellulose) are formed by ester, ether and glycosidic types of bonds, which formed a kind of covalently bonded aggregates called lignin-carbohydrate complex. The compositions of biomass and interaction of these components in the cell wall affect the hydrolysis of carbohydrates, and then determine the efficiency of lignocelluosic biomass utilization. Although lignin is one of the most abundant components in the lignocellulosic biomass besides polysaccharides, it has been considered as a physical barrier to prevent enzyme access to cellulose structure. Therefore, to improve the biomass production in the field and the effects of the factory conversions of biomass into biofuel are the two most concerned issues. That is, how to improve the utilization of lignin efficiency has been becoming a hot issue of biorefinery in biomass energy development. In this paper, the characteristics of development and sedimentary of lignin in plant cell walls, genetic improvement and genetic modification of lignin trait in bioenergy crops have been systematically reviewed, which is mainly from the point of view of cutting the lignin to enhance the overall lignocellulosic biorefinery. To select low-lignin-content energy crops, considerable genetic improvements can be expected through traditional breeding program or down regulation the levels of enzymes involved in the reactions specific for lignin monomer synthesis, which would reduce the amount of chemicals and energy used in pretreatment in lignocellulosic biorefinery. Furthermore, to explore the optimization of lignocellulose characters and the possibility of increased biofuel production rate, the technological means of biological refining pretreatment, transformation and biofuel production have been discussed for overcoming the cost barrier of lignocellulosic biomass utilization in the purpose of loosening lignin’s grip. Several different pretreatment and fractionation processes such as acid, alkaline and organic solvent hydrolysis can be used for treatment of lignocellulosic materials. And successful pretreatment can significantly improve the hydrolysis and increase the yield of bioethanol. In addition, the perspectives on hot issues and biofuel industry involved in studies of lignin were discussed.

Key words: biomass energy, biofuel, lignocellulosic biomass, lignin, biorefinery

[1]    Cai L, Sudholt A, Lee D J, Egolfopoulos F N, Pitsch H, Westbrook C K, Sarathy S M. Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames. Combustion and Flame, 2014, 161: 798-809.
[2]    Gray K A, Zhao L, Emptage M. Bioethanol. Current Opinion in Chemical Biology, 2006, 10(2): 141-146.
[3]    Carrier M, Joubert J E, Danje S, Hugo T, Görgens J, Knoetze J H. Impact of the lignocellulosic material on fast pyrolysis yields and product quality. Bioresource Technology, 2013, 150: 129-138.
[4]    Lee D S, Wi S G, Lee S J, Lee Y G, Kim Y S, Bae H J. Rapid saccharification for production of cellulosic biofuels. Bioresource Technology, 2014, 158: 239-247.
[5]    Zeikus J G, Jain M K, Elankovan P. Biotechnology of succinic acid production and markets for derived industrial products. Applied Microbiology and Biotechnology, 1999, 51: 545-552.
[6]    Zhao Y, Lu W, Chen J, Zhang X, Wang H. Research progress on hydrothermal dissolution and hydrolysis of lignocellulose and lignocellulosic waste. Frontiers of Environmental Science & Engineering, 2014, 8(2): 151-161.
[7]    Thevenot M, Dignac M F, Rumpel C. Fate of lignins in soils: A review. Soil Biology & Biochemistry, 2010, 42: 1200-1211.
[8]    Zeng Y, Zhao S, Yang S, Ding S Y. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Current Opinion in Biotechnology, 2014, 27: 38-45.
[9]    Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiology, 2010, 153: 895-905.
[10]   Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annual Review of Plant Biology, 2003, 54: 519-546.
[11]   Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X , Wang Z Y, Dixon R A. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. The Plant Cell, 2013, 25(10): 3976-3987.
[12]   王媛, 杨红玉, 程在全. SA诱导拟南芥对灰霉病的抗性与木质素含量的关系. 植物保护, 2007, 33(4): 50-54.
Wang Y, Yang H Y, Cheng Z Q. Relationship between SA-induced resistance to grey mold in Arabidopsis and the lignin contents. Plant Protection, 2007, 33(4): 50-54. (in Chinese)
[13]   Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho N S, Hofrichter M, Rogalski J. Biodegradation of lignin by white rot fungi. Fungal Genetics and Biology, 1999, 27(2/3): 175-185.
[14]   Hu Z H, Wen Z Y. Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal, 2008, 38(3): 369-378.
[15]   蒋挺大. 木质素. 北京: 化学工业出版社, 2008.
Jiang T D. Lignin. Beijing: Chemical Industry Press, 2008. (in Chinese)
[16]   宋哲玉, 徐培华, 陶家朴. 木质素胺类沥青乳化剂分子结构式研究. 西安公路交通大学学报, 1996, 16(1): 4-7.
Song Z Y, Yu P H, Tao J P. Study of asphalt emulsion molecule composition of lignin amine. Journal of Xi'an Highway University, 1996, 16(1): 4-7. (in Chinese)
[17]   Hafrén J, Fujino T, Itoh T, Westermark U, Terashima N. Ultrastructural changes in the compound middle lamella of Pinus thunbergii during lignification and lignin removal. Holzforschung, 2000, 54(3): 234-240.
[18]   Medie F M, Davies G J, Drancourt M, Henrissat B. Genome analyses highlight the different biological roles of cellulases. Nature Reviews Microbiology, 2012, 10: 227-234.
[19]   王晓娟, 张树振, 林双双, 邓志刚, 金樑. 紫花苜蓿(Medicago sativa L.)生物能源利用的研究进展. 中国农业科学, 2013, 46(8): 1694-1705.
Wang X J, Zhang S Z, Lin S S, Deng Z G, Jin L. Advances in study on bio-energy utilization of stem cell wall components in alfalfa (Medicago sativa L.). Scientia Agricultura Sinica, 2013, 46(8): 1694-1705. (in Chinese)
[20]   Du X Y, Gellerstedt G, Li J B. Universal fractionation of lignin–carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. The Plant Journal, 2013, 74: 328-338.
[21]   Ramos L P. The chemistry involved in the steam treatment of lignocellulosic materials. Química Nova, 2003, 26: 863-871.
[22]   Reale S, Tullio A D, Spreti N, Angelis F D. Mass spectrometry in biosynthetic and structural investigation of lignins. Mass Spectrometry Reviews, 2004, 23: 87-126.
[23]   Wang H, Tucker M, Ji Y. Recent development in chemical depolymerization of lignin: A review. Journal of Applied Chemistry, 2013, Article ID 838645.
[24]   Wen J L, Sun S L, Xue B L, Sun R C. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials, 2013, 6: 359-391.
[25]   Higuchit T. Lignin biochemistry, biosynthesis and biodegradation. Wood Science and Technology, 1990, 24: 23-63.
[26]   邱卫华, 陈洪章. 木质素的结构、功能及高值化利用. 纤维素科学与技术, 2006, 14(1): 52-59.
Qiu W H, Chen H Z. Structure, function and higher value application of lignin. Journal of Cellulose Science and Technology, 2006, 14(1): 52-59. (in Chinese)
[27]   Lowry J B, Conlan L L, Schlink A C, McSweeney C S. Acid detergent dispersible lignin in tropical grasses. Journal of the Science of Food and Agriculture, 1994, 65(1): 41-49.
[28]   Fukushima R S, Hatfield R D. Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. Journal of Agricultural and Food Chemistry, 2001, 49: 31-33.
[29]   Hatfield R, Fukushima R S. Can lignin be accurately measured? Crop Science, 2005, 45: 832-839.
[30]   Yao S, Wu G, Xing M, Zhou S, Pu J. Determination of lignin content in Acacia spp. using near-infrared reflectance spectroscopy. BioResources, 2010, 5(2): 556-562.
[31] Fukushima R S, Hatfield R D. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples. Journal of Agricultural and Food Chemistry, 2004, 52(12): 3713-3720.
[32]   Pedersen J F, Vogel K P, Funnell D L. Impact of reduced lignin on plant fitness. Crop Science, 2005, 45: 812-819.
[33]   Fike J H, Parrish D J, Wolf D D, Balasko J A, Green J T, Rasnake M, Reynolds J H. Long-term yield potential of switchgrass for biofuel systems. Biomass and Bioenergy, 2006, 30: 198-206.
[34]   Bhandari H S, Walker D W, Bouton J H, Saha M C. Effects of ecotypes and morphotypes in feedstock composition of switchgrass (Panicum virgatum L.). Global Change Biology Bioenergy, 2014, 6: 26-34.
[35]   Casler M D, Jung H G, Coblentz W K. Clonal selection for lignin and etherified ferulates in three perennial grasses. Crop Science, 2008, 48: 424-433.
[36]   Godin B, Lamaudière S, Agneessens R, Schmit T, Goffart J P, Stilmant D, Gerin P A, Delcarte J. Chemical characteristics and biofuel potential of several vegetal biomasses grown under a wide range of environmental conditions. Industrial Crops and Products, 2013, 48: 1-12.
[37]   Kanwarpal S D. Maize biomass yield and composition for biofuels. Crop Science, 2007, 47: 2211-2227.
[38]   Cardona C A. Sánchez Ó J. Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology, 2007, 98: 2415-2457.
[39]   Gressel J. Transgenics are imperative for biofuel crops. Plant Science, 2008, 174(3): 246-263.
[40]   Xie G S, Peng L C. Genetic engineering of energy crops: a strategy for biofuel production in China. Journal of Integrative Plant Biology, 2011, 53 (2): 143-150.
[41]   Chapple C, Ladisch M, Meilan R. Loosening lignin’s grip on biofuel production. Nature, 2007, 200: 7.
[42]   Dien B S, Miller D J, Hector R E, Dixon R A, Chen F, McCaslin M, Reisen P, Sarath G, Cotta M A. Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresource Technology, 2011, 102(11): 6479-6486.
[43]   Getachew G, Ibáñez A M, Pittroff W, Dandekar A M, McCaslin M, Goyal S, Reisen P, DePeters E J, Putnam D H. A comparative study between lignin down regulated alfalfa lines and their respective unmodified controls on the nutritional characteristics of hay. Animal Feed Science and Technology, 2011, 170(3/4): 192-200.
[44]   Chen F, Dixon R A. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology, 2007, 25: 759-761.
[45]   Zhong R Q, Zheng H Y. Regulation of cell wall biosynthesis. Current Opinion in Plant Biology, 2007, 10: 564-572.
[46]   Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T. Transcription switches for protoxylem and metaxylem vesseI formation. Genes Development, 2005, 19(16): 1855-1860.
[47]   Zhong R, Richardson E A, Ye Z H. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta, 2007, 225: 1603-1611.
[48]   Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. The Plant Journal, 2005, 43: 553-567.
[49]   Karpinska B, Karlsson M, Srivastava M, Stenberg A, Schrader J, Sterky F, Bhalerao R, Wingsle G. MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Molecular Biology, 2004, 56: 255-270.
[50]   Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia F A, Roberts K, Martin C. The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. The Plant Cell, 1998, 10: 135-154.
[51]   Patzlaff A, McInnis S, Courtenay A, Surman C, Newman L J, Smith C, Bevan M W, Mansfield S, Whetten R W, Sederoff R R, Campbell M M. Characterization of a pine MYB that regulates lignification. The Plant Journal, 2003, 36: 743-754.
[52]   Zhong R, Richardson E A, Ye Z H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. The Plant Cell, 2007, 19: 2776-2792.
[53]   Mitsuda N, Sekic M, Shinozaki K, Ohme-Takagi M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell, 2005, 17(11): 2993-3006.
[54]   Zhong R, Demura T, Ye Z H. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. The Plant Cell, 2006, 18(11): 3158-3170.
[55]   Newman L J, Perazza D E, Juda L, Campbell M M. Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark -photomorphogenic components of the det3 mutant phenotype. The Plant Journal, 2004, 37: 239-250.
[56]   Bhargava A, Ahad A, Wang S, Mansfield S D, Haughn G W, Douglas C J, Brian E. Ellis B E. The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis. Planta, 2013, 237: 1199-1211.
[57]   Jackson L A, Shadle G L, Zhou R, Nakashima J, Chen F, Dixon R A. Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. Bioenergy Research, 2008, 1(3/4): 180-192.
[58]   胡可, 严雪锋, 栗丹, 唐晓梅, 杨宏, 王艳, 邓洪渊, 马欣荣. 沉默CCR 和CAD基因培育低木质素含量转基因多年生黑麦草. 草业学报, 2013, 22(5): 72-83.
Hu K, Yan X F, Li D, Tang X M, Yang H, Wang Y, Deng H Y, Ma X R. Genetic improvement of perennial ryegrass with low lignin content by silencing genes of CCR and CAD. Acta Prataculture Sinica, 2013, 22(5): 72-83. (in Chinese)
[59]   Zhao Q, Tobimatsu Y, Zhou R, Pattathil S, Giraldo L G, Fu C X, Jackson L A, Hahn M G, Kim H, Chen F, Ralph J, Dixon R A. Loss of function of cinnamyl alcohol dehydrogenase1 leads to unconventional lignin and a temperature sensitive growth defect in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(33): 13660-13665.
[60]   Vanholme R, Cesarino I, Rataj K, Xiao Y G, Sundin L, Goeminne G, Kim H, Joanna C, Morreel K, Araujo P, Welsh L, Haustraete J, McClellan C, Vanholme B, Ralph J, Simpson G G, Halpin C, Boerjan W. Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science, 2013, 341: 1103-1106.
[61]   Lee Y, Rubio M C, Alassimone J, Geldner N. A mechanism for localized lignin deposition in the endodermis. Cell, 2013, 153: 402-412.
[62]   Toledano A, Serrano L, Labidi J. Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel, 2014, 116: 617-624.
[63]   Kumar R, Wyman C E. Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnology and Bioengineering, 2009, 102: 1544-1557.
[64]   Sannigrahi P, Pu Y, Ragauskas A. Cellulosic biorefineries: Unleashing lignin opportunities. Current Opinion in Environmental Sustainability, 2010, 2: 383-393.
[65]   Zhao X B, Cheng K, Liu D H. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 2009, 82: 815-827.
[66]   Brandt A, Ray M J, To T Q, Leak D J, Murphy R J, Welton T. Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry, 2011, 13: 2489-2499.
[67]   Daniel L, Hodge W D B. Impacts of delignification and hot water pretreatment on the water induced cell wall swelling behavior of grasses and its relation to cellulolytic enzyme hydrolysis and binding. Cellulose, 2014, 21: 221-235.
[68]   Taherzadeh M J, Karimi K. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioResources, 2007, 2: 472-499.
[69]   Wettstein S G, Alonso D M, Gürbüz E I, Dumesic J A. A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Current Opinion in Chemical Engineering, 2012, 1: 218-224.
[70]   Yang B, Wyman C E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering, 2004, 86(1): 88-98.
[71]   Xiao W, Clarkson W W. Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation, 1997, 8(1): 61-66.
[72]   Mesa L, González E, Cara C, González M, Castro E, Mussatto S I. The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal, 2011, 168: 1157-1162.
[73]   Kassim E A, El-Shahed A S. Enzymatic and chemical hydrolysis of certain cellulosic materials. Agricultural Wastes, 1986, 17: 229-233.
[74]   Xu Z, Wang Q, Jiang Z, Yang X X, Ji Y. Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenergy, 2007, 31: 162-167.
[75]   Silverstein R A, Chen Y, Sharma-Shivappa R R, Boyette M D, Osborne J. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 2007, 98: 3000-3011.
[76]   Kim T H, Yoo C G, Lamsal B P. Front-end recovery of protein from lignocellulosic biomass and its effects on chemical pretreatment and enzymatic saccharification. Bioprocess and Biosystems Engineering, 2013, 36: 687-694.
[77]   Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J. Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnology and Bioengineering, 2006, 94: 851-861.
[78]   Araque E, Parra C, Freer J, Contreras D, Rodriguez J, Mendonca R, Baeza J. Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme and Microbial Technology, 2007, 43: 214-219.
[79]   Zhang Z, O’Hara I M, Doherty W O S. Pretreatment of sugarcane bagasse by acidified aqueous polyol solutions. Cellulose, 2013, 20(6): 3179-3190.
[80]   Papatheofanous M G, Billa E, Koullas D P, Monties B, Koukios E G. Two-stage acidcatalyzed fractionation of lignocellulosic biomass in aqueous ethanol systems at low temperatures. Bioresource Technology, 1995, 54: 305-310.
[81]   Senila L, Senila M, Costiug S, Miclean M, Cerasel V, Roman C. The autohydrolysis of Albies alba wood using adaptive neural fuzzy interference system mathematical modeling. International Journal of Green Energy, 2014, 11(6): 611-624.
[82]   李建华, 张越, 刘仲齐. 化学处理方法对木质纤维素降解效率的影响评述. 生物技术进展, 2011, 1(6): 421-425.
Li J H, Zhang Y, Liu Z Q. Influence of chemical pretreatment technology on the digestibility of lignocellulose. Current Biotechnology, 2011, 1(6): 421-425. (in Chinese)
[83] Stewart Jr C N, Liu G S. Bioenergy plants in the United States and China. Plant Science, 2011, 181(6): 621-622.
[1] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[2] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[3] DONG HeHe, LUO YongLi, LI WenQian, WANG YuanYuan, ZHANG QiuXia, CHEN Jin, JIN Min, LI Yong, WANG ZhenLin. Effects of Different Spring Nitrogen Topdressing Modes on Lodging Resistance and Lignin Accumulation of Winter Wheat [J]. Scientia Agricultura Sinica, 2020, 53(21): 4399-4414.
[4] JIANG Xu,CUI HuiTing,WANG Zhen,ZHANG TieJun,LONG RuiCai,YANG QingChuan,KANG JunMei. Cloning and Function Analysis of MsNST in Lignin and Cellulose Biosynthesis Pathway from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3818-3832.
[5] CHEN XuePing, LIU ShiYao, YIN NengWen, JING LingYun, WEI LiJuan, LIN Na, XIAO Yang, XU XinFu, LI JiaNa, LIU LieZhao. Construction of a Near Infrared Model for Detecting Stem Fiber Component Content and Lignin Monomer G/S in Rapeseed [J]. Scientia Agricultura Sinica, 2018, 51(4): 688-696.
[6] SHE HengZhi, NIE Jiao, LI YingShuang, LIU XingBei, HU Dan, MA Shan, Ciren zhuoga, WANG Can, WU DongQian, RUAN RenWu, YI ZeLin. Lignin and Lignin Monomer Synthetic Characteristics of Culm in Common Buckwheat with Different Lodging Resistance Capabilities [J]. Scientia Agricultura Sinica, 2017, 50(7): 1202-1209.
[7] YOU Yi-na, DENG Hong, MENG Yong-hong, FANG Jie, GUO Yu-rong, ZHANG Ying . The Impact of Alkaline Hydrogen Peroxide Pretreatment on the Chemical Composition and Enzymatic Hydrolyzability of Apple Pomace [J]. Scientia Agricultura Sinica, 2016, 49(8): 1559-1566.
[8] ZHU Kai-wei, LIU Zhen, HE Liang-ping, LIN Jin-chai. Eco-Economic Potential Analysis of Chinese Main Crops’ Bio-Energy Utilization Straw Resources [J]. Scientia Agricultura Sinica, 2016, 49(19): 3769-3785.
[9] LIU He-juan, LI Yue-peng, LIU Wei, SHAO Qi, QI Hong-yan. Effects of Fusarium Oxysporum f. sp. melonis on Lignin, Activities of Lingin-Related Enzymes and Genes Expressions of CmCADs in Oriental Melon (Cucumis melo var. makuwa Makino) [J]. Scientia Agricultura Sinica, 2016, 49(11): 2153-2163.
[10] HU Dan, LIU Xing-bei, WANG Can, YANG Hao, LI He-xin, RUAN Ren-wu, YUAN Xiao-hui, YI Ze-lin. Expression Analysis of Key Enzyme Genes in Lignin Synthesis of Culm Among Different Lodging Resistances of Common Buckwheat (Fagopyrum esculentum Moench) [J]. Scientia Agricultura Sinica, 2015, 48(9): 1864-1872.
[11] GUO Guang-yan, BAI Feng, LIU Wei, BI Cai-li. Advances in Research of the Regulation of Transcription Factors of Lignin Biosynthesis [J]. Scientia Agricultura Sinica, 2015, 48(7): 1277-1287.
[12] ZHU Kai-wei, LIU Zhen, Lü Zhi-chen, PU Gang-qing, GUO Wei. The Ecological Development Potential and Time-Space Analysis of Chinese Main Agricultural Crop Biomass Energy [J]. Scientia Agricultura Sinica, 2015, 48(21): 4285-4301.
[13] LI Hong-Ya, LI Shu-Na, WANG Shu-Xiang, WANG Quan, ZHU Bao-Cheng. Screening, Identification of Lignin-Degradating Bacillus MN-8 and Its Characteristics in Degradation of Maize Straw Lignin [J]. Scientia Agricultura Sinica, 2014, 47(2): 324-333.
[14] WANG Xiao-Juan, ZHANG Shu-Zhen, LIN Shuang-Shuang, DENG Zhi-Gang, JIN Liang. Advances in Study on Bio-Energy Utilization of Stem Cell Wall Components in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2013, 46(8): 1694-1705.
[15] LI Jun, LI Zheng-Xiao, JIE Hong-Tu, DONG Zhi, BAI Zhen, WANG Gui-Man, CHEN Zhi-Wen, ZHANG Xu-Dong. Effects of Different Stalk Mulching on Soil Lignin Content [J]. Scientia Agricultura Sinica, 2013, 46(11): 2265-2270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!