Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (21): 4285-4301.doi: 10.3864/j.issn.0578-1752.2015.21.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

The Ecological Development Potential and Time-Space Analysis of Chinese Main Agricultural Crop Biomass Energy

ZHU Kai-wei1, LIU Zhen1,2, LÜ Zhi-chen1, PU Gang-qing1, GUO Wei1   

  1. 1Low-Carbon Energy Research, Chongqing University of Technology, Chongqing 400054, China
    2Lawrence Berkeley National Laboratory, California 94530, USA
  • Received:2014-12-01 Online:2015-11-01 Published:2015-11-01

Abstract: 【Objective】The estimation of agricultural biomass resource is the key link and foundation to develop and utilize agricultural biomass scientifically. Straw returning could help maintaining and enhancing soil function, so the ecological potential assessment of agricultural biomass resource is the important prerequisite of sustainability using agricultural biomass. Thus, the main purpose of this article is, to consider the ecological requirements of agricultural soil, to assess the ecological available biomass energy potential from the main crops in different straw returning rate scenarios, and analyze the time-space characteristics and structural composition, to provide some suggestions for the development of agricultural biomass.【Method】Firstly, according to the national datum of crop planting area datum, the percentage ratio of each province and sown area, the main crops planting proportion and yield datum, using a linear regression method, expert prediction, to make predictions for the future 50 years; Secondly, based on the relative researches, the grass valley industrial using ratio, feed using ratio and burning ratio were designed; considering the soil ecological requirements and relative researches, using scenario analysis method, low crop remaining returning ratio scenario, medium crop remaining returning ratio scenario and high crop remaining returning ratio scenario were designed; Finally, from the perspective of spatial distribution and time distribution, to calculate and analyze the finally potential available biomass, and give some suggestions.【Result】(1) By 2050, in low crop remaining returning ratio scenario, medium crop remaining returning ratio scenario and high crop remaining returning ratio scenario, the final available biomass were respectively 162 million tons of standard coal equivalent, 78 million tons of standard coal equivalent and 11 million tons of standard coal equivalent. And as time goes on, the final available biomass of main crops will eventually have agglomeration on space, time and species composition. (2) In low and medium crop remaining returning ratio scenario, the space distribution of final biomass are mainly distributed in the northeast, East China, central China, besides Henan, Heilongjiang, Shandong and Xinjiang Province account most of the total; From the time aspect, it is mainly concentrated in August, September and October, and the rice, wheat and corn are the main sources. (3) In high crop remaining returning ratio scenario, from the space aspect, it mainly concentrated in East China, central China, South China and southwest China, besides Yunnan, Guangxi, Henan and Heilongjiang Province account most of the total; From the time aspect, it is mainly in January, February, November and December, from the component aspect, it is only made up of wheat, beans, potato and sugar cane.【Conclusion】Henan Province, Heilongjiang Province, Xinjiang Province and Shandong Province should be given priority when developing and using the biomass energy; Besides, when considering to build a regional crop straw distribution center, regional biomass energy industry base, large straw direct combustion power generation base, and some other large scale integrated agricultural biomass energy development projects, northeast China and central China could be given priority too. In addition, the biomass energy potential of southwest China, northwest China can be furthered through crop planting structure adjustment and improve the level of agricultural management.

Key words: biomass energy, crop stalks, main crop, renewable energy sources

[1]    闫强, 王安建, 王高尚, 于文加. 全球生物质能资源评价. 中国农学通报, 2009, 25(18): 466-470.
Yan Q, Wang A J, Wang G S, Yu W J. Evaluation of global bioenergy resources. Chinese Agriculture Science Bulletin, 2009, 25(18): 466-470. (in Chinese)
[2]    周凤起, 周大地. 中国长期能源规划. 北京: 中国计划出版社, 1999.
Zhou F Q, Zhou D D. Chinese Long Term Energy Plan. Beijing: China Planning Press, 1999. (in Chinese)
[3]    Matthew D E, Pouyan Nejadhashemi A, Sean A W. Simulating stream health sensitivity to landscape changes due to bioenergy crops expansion. Biomass and Bioenergy, 2013, 58: 198-209.
[4]    Gill T, Margaret J G, Pete S, Jo I H, Martin W. The potential distribution of bioenergy crops in Europe under present and future climate. Biomass and Bioenergy, 2006, 30(3): 183-197.
[5]    Hak K K, Prem B P, Fillip To S D. Assessing impacts of bio-energy crops and climate change on hydrometeorology in the Yazoo River Basin, Mississippi. Agriculture and Forest Meteorology, 2013, 169: 61-73.
[6]    Dou F G, Hons F M, Ocumpaugh W R, Read J C, Hussey M A, Muir J P. Soil organic carbon pools under switch-grass grown as a bioenergy crop compared to other conventional crops. Pedosphere, 2013, 23(4): 409-416.
[7]    Sarkhot D V, Grunwald S, Ge Y, Morgan C L S. Total and available soil carbon fractions under the perennial grass Cynodon dactylon (L.) Pers and the bio-energy crop Arundo donax L. Biomass and Bioenergy, 2012, 41: 122-130.
[8]    Tolbert V R, Todd J D E, Mann L K, Jawdy C M, Mays D A, Malik R, Bandaranayake W, Houston A, Tyler D, Pettry D E. Changes in soil quality and below-ground carbon storage with conversion of traditional agricultural crop lands to bio-energy crop production. Environmental Pollution, 2002, 116: S97-S106.
[9]    Moonmoon H, Dhiman D, Baruah D C. Bioenergy potential from crop residue biomass in India. Renewable and Sustainable Energy Reviews, 2014, 32: 504-512.
[10]   张百良, 杨世关, 马孝琴. 中国生物质能技术应用与农业生态环境研究. 中国生态农业学报, 2003, 11(3): 184-185.
Zhang B L, Yang S G, Ma X Q. Influence of the development of the biomass energy technology on agricultural ecological environment in China. Chinese Journal of Eco-Agriculture, 2013, 11(3): 184-185. (in Chinese)
[11]   高先声. 生物质的热化学反应特性和秸秆气化问题. 可再生能源, 2004, 114(2): 26-29.
Gao X S. The thermo-chemical reactivity features of biomass and in issue on crop straw gasification. Renewable Energy, 2004, 114(2): 26-29. (in Chinese)
[12]   肖军, 沈来宏, 邓霞, 王泽明, 仲晓黎. 秸秆类生物质加压气化特性研究. 中国电机工程学报, 2009, 29(5): 103-108.
Xiao J, Shen L H, Deng X, Wang Z M, Zhong X L. Study on characteristics of pressurized biomass gasification. Proceedings of the Chinese Society for Electrical Engineering, 2009, 29(5): 103-108. (in Chinese)
[13]   张锦华, 吴方位, 沈亚芳. 生物质能源发展会带来中国粮食安全问题吗?—以玉米燃料乙醇为例的模型及分析框架. 中国农村经济, 2008(4): 4-15.
Zhang J H, Wu F W, Shen Y F. Will biomass energy development bring China's food safety problem—Using corn ethanol as an example to build the model and analysis framework. Chinese Rural Economy, 2008(4): 4-15. (in Chinese)
[14]   Wu F W, Zhang D Y, Zhang J H. Will the development of bioenergy in China create a food security problem? Modeling with fuel ethanol as an example. Renewable Energy, 2012, 47: 127-134.
[15]   Tatsuji K. Biofuel and food security in China and Japan. Renewable and Sustainable Energy Reviews, 2013, 21: 102-109.
[16]   Bimlesh K, Rahul B H, Balachandra P, Ravindranath N H. Bioenergy and food security: Indian context. Energy for Sustainable Development, 2009, 13(4): 265-270.
[17]   中华人民共和国国土资源部. 2013中国国土资源公报. 2014.
The Ministry of Land and Resources of the People’s Republic of China. Chinese Land Resource Bulletin 2013. 2014. (in Chinese)
[18]   梁书民. 我国各地区复种发展潜力与复种行为研究. 农业经济问题, 2007, 28(5) : 85-90.
Liang S M. Proing potentials of multiple cropping in the selected provinces in China. Issues in Agricultural Economy, 2007, 28(5): 85-90. (in Chinese)
[19]   李兆亮, 杨子生, 邹金浪. 我国耕地利用集约度空间差异及影响因素研究. 农业现代化研究, 2014, 35(1): 88-92.
Li Z L, Yang Z S, Zou J L. Spatial differences and influences of cultivated land intensive use degree in China. Research of Agricultural Modernization, 2014, 35(1): 88-92. (in Chinese)
[20]   中华人民共和国国家统计局. 农业年度数据[DB/OL]. http: //data. stats. gov. cn/workspace/index?m=hgnd
The National Bureau of Statistics of the People’s Republic of China. Agricultural annual data [DB/OL]. http: //data. stats. gov. cn/ workspace/ index?m=hgnd
[21]   钟华平, 岳燕珍, 樊江文. 中国作物秸秆资源及其利用. 资源科学, 2003, 25(4): 62-67.
Zhong H P, Yue Y Z, Fan J W. Characteristics of crop straw resources in China and its utilization. Resources Science, 2003, 25(4): 62-67. (in Chinese)
[22]   张福春, 朱志辉. 中国作物的收获指数. 中国农业科学, 1990, 23(2): 83-87.
Zhang F C, Zhu Z H. Harvest index for various crops in China. Scientia Agricultura Sinica, 1990, 23(2): 83-87. (in Chinese)
[23]   谢光辉, 韩东倩, 王晓玉, 吕润海. 中国禾谷类大田作物收获指数和秸秆系数. 中国农业大学学报, 2011, 16(1): 1-8.
Xie G H, Han D Q, Wang X Y, Lü R H. Harvest index and residue factor of cereal crops in China. Journal of China Agricultural University, 2011, 16(1): 1-8. (in Chinese)
[24]   谢光辉, 王晓玉, 韩东倩, 薛帅. 中国非禾谷类大田作物收获指数和秸秆系数. 中国农业大学学报, 2011, 16(1): 9-17.
Xie G H, Wang X Y, Han D Q, Xue S. Harvest index and residue factor of non-cereal crops in China. Journal of China Agricultural University, 2011, 16(1): 9-17. (in Chinese)
[25]   王亚静, 毕于运, 高春雨. 中国秸秆资源可收集利用量及其适宜性评价. 中国农业科学, 2010, 43(9): 1852-1859.
Wang Y J, Bi Y Y, Gao C Y. Collectable amounts and suitability evaluation of straw resource in China. Scientia Agricultura Sinica, 2010, 43(9): 1852-1859. (in Chinese)
[26]   张希良, 高虎. 可再生能源规划原理方法工具与案例, 重庆: 重庆理工大学, 2010.
Zhang X L, Gao H. Renewable Energy Planning Method, Tools and Case, Chongqing: Chongqing Oniversity of Technology, 2010.
[27]   王舒娟, 蔡荣. 农户秸秆资源处置行为的经济学分析. 中国人口·资源与环境, 2014, 24(8): 162-167.
Wang S J, Cai R. Economic analysis of the straw disposal behavior of farmers. China Population, Resources and Environment, 2014, 24(8): 162-167. (in Chinese)
[28]   崔明, 赵丽欣, 田宜水, 孟海波, 孙丽英, 张艳丽, 王飞, 李冰峰. 中国主要农作物秸秆资源能源化利用分析评价. 农业工程学报, 2008, 24(12): 291-295.
Cui M, Zhao L X,Tian Y S, Meng H B, Sun L Y, Zhang Y L, Wang F, Li B F. Analysis and evaluation on energy utilization of main crop straw resources in China. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(12): 291-295. (in Chinese)
[29]   Amadou A T, Jean L R, Zibo G, Béatrice M, Christophe P, David S. Impact of very low crop residues cover on wind erosion in the Sahel. Catena, 2011, 85(3): 205-214.
[30]   Wilhelm W W, Hess J R, Karlen D L, Johnson J M F, Muth D J, Baker J M, Gollany H T, Novak J M, Stott D E, Varvel G E. Balancing limiting factors and economic drivers for sustainable midwestern agricultural residue feedstock supplies. India Biotechnology, 2010, 6(5): 271-287.
[31]   蔡亚庆, 仇焕广, 徐志刚. 中国各区域秸秆资源可能源化利用的潜力分析. 自然资源学报, 2011, 26(10): 1637-1646.
Cai Y Q, Qiu H G, Xu Z G. Evaluation on potentials of energy utilization of crop residual resources in different regions of China. Journal of Natural Resources, 2011, 26(10): 1637-1646. (in Chinese)
[1] ZHU Kai-wei, LIU Zhen, HE Liang-ping, LIN Jin-chai. Eco-Economic Potential Analysis of Chinese Main Crops’ Bio-Energy Utilization Straw Resources [J]. Scientia Agricultura Sinica, 2016, 49(19): 3769-3785.
[2] WANG Xiao-juan1,2, YANG Yang, ZHANG Xiao-qiang, JIANG Shao-jun, SONG Yu, ZHOU Hai-chen, JIN Liang. To Make Biofuel: Cutting the Lignin or Loosening Lignin’s Grip? [J]. Scientia Agricultura Sinica, 2015, 48(2): 229-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!