Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (8): 1694-1705.doi: 10.3864/j.issn.0578-1752.2013.08.020

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Advances in Study on Bio-Energy Utilization of Stem Cell Wall Components in Alfalfa (Medicago sativa L.)

 WANG  Xiao-Juan, ZHANG  Shu-Zhen, LIN  Shuang-Shuang, DENG  Zhi-Gang, JIN  Liang   

  1. State Key Laboratory of Grassland Agro-Ecosystem, School of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020
  • Received:2012-09-28 Online:2013-04-15 Published:2012-11-22

Abstract: Alfalfa (Medicago sativa L.) has been recognized as one of the potential biofuel crops with high biomass and wild adaptability. Most importantly, the stems of alfalfa would be processed to produce ethanol and the leaves could be served separately as a livestock feed. In this paper, the recent advances of the studies and utilization of alfalfa as energy plant were reviewed, which including germplasm evaluations of biofuel traits, development of stem cell wall, biosynthetic pathways and genetic control of cell wall components (cellulose, hemi-cellulose and lignin), and the effects of cultivation management system to ethanol production. The development of stem cell wall and genetic regulation of lignin in alfalfa were discussed. Furthermore, the perspective utilization of alfalfa as biofuel crop was also proposed.

Key words: alfalfa , bioenergy , energy crop , cell wall , lignin

[1]Holdren J P. Energy and sustainability. Science, 2007, 315(5813): 737.

[2]Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttila M, Ando T, Samejima M. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science, 2011, 333(6047): 1279-1282.

[3]United States Department of Agriculture. A USDA regional roadmap to meeting the biofuels goals of the renewable fuels standard by 2022. http://www.usda.gov/documents/USDA_Biofuels_Report_6232010.pdf.

[4]Dien B S, Miller D J, Hector R E, Dixon R A, Chen F, McCaslin M, Reisen P, Sarath G, Cotta M A. Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresource Technology, 2011, 102(11): 6479-6486.

[5]Hess J R, Wright C T, Kenney K L. Cellulosic biomass feedstocks and logistics for ethanol production. Biofuels Bioproducts and Biorefining-Biofpr, 2007, 1(3): 181-190.

[6]Biswas B, Scott P T, Gresshoff P M. Tree legumes as feedstock for sustainable biofuel production: opportunities and challenges. Journal of Plant Physiology, 2011, 168(16): 1877-1884.

[7]Pu Y Q, Zhang D C, Singh P M, Ragauskas A J. The new forestry biofuels sector. Biofuels Bioproducts and Biorefining-Biofpr, 2008, 2(1): 58-73.

[8]Venturi P, Venturi G. Analysis of energy comparison for crops in European agricultural systems. Biomass and Bioenergy, 2003, 25(3): 235-255.

[9]Samac D A, Jung H J G, Lamb J F S. Development of Alfalfa (Medicago sativa L.) As a Feedstock for Production of Ethanol and Other Bioproducts. In: Minteer S (edn.) Alcoholic Fuels. Florida: The Chemical Rubber Company Press, 2006, 79-98.

[10]González-García S, Moreira M T, Feijoo G. Environmental performance of lignocellulosic bioethanol production from Alfalfa stems. Biofuels Bioproducts and Biorefining-Biofpr, 2010, 4(2): 118-131.

[11]Lamb J F S, Jung H J G, Sheaffer C C, Samac D A. Alfalfa leaf protein and stem cell wall polysaccharide yields under hay and biomass management systems. Crop Science, 2007, 47(4): 1407-1415.

[12]Vadas P A, Barnett K H, Undersander D J. Economics and energy of ethanol production from alfalfa, corn, and switchgrass in the Upper Midwest, USA. Bioenergy Research, 2008, 1(1): 44-55.

[13]Lee Y, Chen F, Gallego-Giraldo L, Dixon R A, Voit E O. Integrative analysis of transgenic alfalfa (Medicago sativa L.) suggests new metabolic control mechanisms for monolignol biosynthesis. PLoS Computational Biology, 2011, 7(5): 1-13.

[14]张树振, 金樑, 黄利春, 王文斌, 王晓娟. 不同紫花苜蓿栽培品种生物能源性状评价. 兰州大学学报: 自然科学版, 2012, 48(4): 72-79.

Zhang S Z, Jin L, Huang L C, Wang W B, Wang X J. Estimation of biofuel traits of alfalfa cultivars in Medicago sativa L. Journal of Lanzhou University: Natural Sciences, 2012, 48(4): 72-79. (in Chinese)

[15]Maureira I J, Ortega F, Campos H, Osborn T C. Population structure and combining ability of diverse Medicago sativa germplasms. Theoretical and Applied Genetics, 2004, 109(4): 775-782.

[16]Sakiroglu M, Brummer E C. Clarifying the ploidy of some accessions in the USDA alfalfa ermplasm collection. Turkish Journal of Botany, 2011, 35(5): 509-519.

[17]Bagavathiannan M V, Julier B, Barre P, Gulden R H, van Acker R C. Genetic diversity of feral alfalfa (Medicago sativa L.) populations occurring in Manitoba, Canada and comparison with alfalfa cultivars: an analysis using SSR markers and phenotypic traits. Euphytica, 2010, 173(3): 419-432.

[18]Sakiroglu M, Moore K J, Brummer E C. Variation in biomass yield, cell wall components, and agronomic traits in a broad of diploid alfalfa accessions. Crop Science, 2011, 51(5): 1956-1964.

[19]Sticklen M B. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nature Reviews Genetics, 2008, 9(6): 433-443.

[20]Lacayo C I, Malkin A J, Holman H Y N, Chen L, Ding S Y, Hwang M S, Thelen M P. Imaging cell wall architecture in single zinnia elegans tracheary elements. Plant Physiology, 2010, 154(1): 121-133.

[21]Doblin M S, Pettolino F, Bacic A. Plant cell walls: the skeleton of the plant world. Functional Plant Biology, 2010, 37(5): 357-381.

[22]Jung H G, Engels F M. Alfalfa stem tissues: cell wall deposition, composition, and degradability. Crop Science, 2002, 42(2): 524-534.

[23]Engels F M, Jung H G. Alfalfa stem tissues: cell-wall development and lignification. Annals of Botany, 1998, 82(5): 561-568.

[24]Sarath G, Dien B, Saathoff A J, Vogel K P, Mitchell R B, Chen H. Ethanol yields and cell wall properties in divergently bred switchgrass genotypes. Bioresource Technology, 2011, 102(20): 9579-9585.

[25]Guines F, Julier B, Ecalle C, Huyghe C. Among and within-cultivar variability for histological traits of lucerne (Medicago sativa L.) stem. Euphytica, 2003, 130(2): 293-301.

[26]Festucci-Buselli R A, Otoni W C, Joshi C P. Structure, organization, and functions of cellulose synthase complexes in higher plants. Brazilian Journal of Plant Physiology, 2007, 19(1): 1-13.

[27]Lai-Kee-Him J, Chanzy H, Müller M, Putaux J L, Imai T, Bulone V. In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. Journal of Biological Chemistry, 2002, 277(40): 3693l-36939.

[28]Anderson W F, Dien B S, Jung H J G, Vogel K P, Weimer P J. Effects of forage quality and cell wall constituents of bermuda grass on biochemical conversion to ethanol. Bioenergy Research, 2010, 3(3): 225-237.

[29]Dien B S, Jung H J G, Vogel K P, Casler M D, Lamb J F S, Iten L, Mitchell R B, Sarath G. Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass and Bioenergy, 2006, 30(10): 880-891.

[30]Endler A, Persson S. Cellulose synthases and synthesis in Arabidopsis. Molecular Plant, 2011, 4(2): 199-211.

[31]Hanus J, Mazeau K. The xyloglucan-cellulose assembly at the atomic scale. Biopolymers, 2006, 82(1): 59-73.

[32]宋东亮, 沈君辉, 李来庚. 高等植物细胞壁中纤维素的合成. 植物生理学通讯, 2008, 44(4): 791-796.

Song D L, Shen J H, Li L G. Cellulose synthesis in the cell walls of higher plants. Plant Physiology Communications, 2008, 44(4): 791-796. (in Chinese)

[33]Scheller H V, Ulvskov P. Hemicelluloses. Annual Review of Plant Biology, 2010, 6l: 263-289.

[34]York W S, O’Neill M A. Biochemical control of xylan biosynthesis-which end is up? Current Opinion in Plant Bio1ogy, 2008, 11(3): 258-265.

[35]Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annual Review of Plant Biology, 2003, 54: 519-546.

[36]Weng J K, Li X, Bonawitz N D, Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Current Opinion in Biotechnology, 2008, 19(2): 166-172.

[37]Fu C X, Mielenz J R, Xiao X R, Ge Y R, Hamilton C Y, Rodriguez M Jr, Chen F, Foston M, Ragauskas A, Bouton J, Dixon R A, Wang Z Y. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3803-3808.

[38]Li X, Weng J K, Chapple C. Improvement of biomass through lignin modification. Plant Journal, 2008, 54(4): 569-581.

[39]Zhao Q, Dixon R A. Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends in Plant Science, 2011, 16(4): 227-233.

[40]Shen H, Fu C X, Xiao X R, Ray T, Tang Y H, Wang Z Y, Chen F. Developmental control of lignification in stems of lowland switchgrass variety alamo and the effects on saccharification efficiency. Bioenergy Research, 2009, 2(4): 233-245.

[41]Keating J D, Panganiban C, Mansfield S D. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnology and Bioengineering, 2006, 93(6): 1196-1206.

[42]Chen F, Dixon R A. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology, 2007, 25(7): 759-761.

[43]Palmer N A, Sattler S E, Saathoff A J, Funnell D, Pedersen J F, Sarath G. Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum. Planta, 2008, 229(1): 115-127.

[44]Penning B W, Hunter C T, Tayengwa R, Eveland A L, Dugard C K, Olek A T, Vermerris W, Koch K E, McCarty D R, Davis M F, Thomas S R, McCann M C, Carpita N C. Genetic resources for maize cell wall biology. Plant Physiology, 2009, 151(4): 1703-1728.

[45]Reddy M S S, Chen F, Shadle G, Jackson L, Aljoe H, Dixon R A. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(46): 16573-16578.

[46]Shadle G, Chen F, Reddy M S S, Jackson L, Nakashima J, Dixon R A. Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry, 2007, 68(11): 1521-1529.

[47]Jackson L A, Shadle G L, Zhou R, Nakashima J, Chen F, Dixon R A. Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. Bioenergy Research, 2008, 1(3/4): 180-192.

[48]Getachew G, Ibáñez A M, Pittroff W, Dandekar A M, McCaslin M, Goyal S, Reisen P, DePeters E J, Putnam D H. A comparative study between lignin down regulated alfalfa lines and their respective unmodified controls on the nutritional characteristics of hay. Animal Feed Science and Technology, 2011, 170(3/4): 192-200.

[49]Huntley S K, Ellis D, Gilbert M, Chapple C, Mansfield S D. Significant increases in pulping efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins. Journal of Agricultural and Food Chemistry, 2003, 51(21): 6178-6183.

[50]Sarath G, Dien B, Saathoff A J, Vogel K P, Mitchell R B, Chen H. Ethanol yields and cell wall properties in divergently bred switchgrass genotypes. Bioresource Technology, 2011, 102(20): 9579-9585.

[51]Hou S, Li L G. Rapid characterization of woody biomass digestibility and chemical composition using near-infrared spectroscopy. Journal of Integrative Plant Biology, 2011, 53(2): 166-175.

[52]Studer M H, DeMartini J D, Davis M F, Sykes R W, Davison B, Keller M, Tuskan G A, Wyman C E. Lignin content in natural Populus variants affects sugar release. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 6300-6305.

[53]Ko J H, Yang S H, Park A H, Lerouxel O, Han K H. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant Journal, 2007, 50(6): 1035-1048.

[54]Hisano H, Nandakumar R, Wang Z Y. Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cellular and Developmental Biology-Plant, 2009, 45(3): 306-313.

[55]Carpita N C. Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1→4)-β-D-glucans. Plant Physiology, 2011, 155(1): 171-184.

[56]Samac D A, Litterer L, Temple G, Jung H J G, Somers D A. Expression of UDP-glucose dehydrogenase reduces cell-wall polysaccharide concentration and increases xylose content in alfalfa stems. Applied Biochemistry and Biotechnology, 2004, 113: 1167-1182.

[57]Yang J M, Chen F, Yu O, Beachy R N. Controlled silencing of 4-coumarate: CoA ligase alters lignocellulose composition without affecting stem growth. Plant Physiology and Biochemistry, 2011, 49(1): 103-109.

[58]Jensen E S, Peoples M B, Boddey R M, Gresshoff P M, Hauggaard-Nielsen H, Alves B J R, Morrison M J. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. Agronomy for Sustainable Development, 2012, 32(2): 329-364.

[59]Lamb J F S, Sheaffer C C, Samac D A. Population density and harvest maturity effects on leaf and stem yield in alfalfa. Agronomy Journal, 2003, 95(3): 635-641.

[60]杜汉强, 牛一川, 赵晓玲, 陈双恩. 不同播种密度对紫花苜蓿主要性状的影响. 草业科学, 2004, 21(3): 42-45.

Du H Q, Niu Y C, Zhang X L, Chen S E. Sowing density effects on the major characteristics of alfalfa. Pratacultural Science, 2004, 21(3): 42-45. (in Chinese)

[61]张国利. 不同灌溉量对紫花苜蓿产量影响的对比. 草业科学, 2009, 26(10): 181-183.

Zhang G L. Effect of different irrigation amounts on alfalfa yield. Pratacultural Science, 2009, 26(10): 118-183. (in Chinese)

[62]丁宁, 孙洪仁, 刘志波, 邵光武, 沈月. 灌溉量对紫花苜蓿水分利用效率和耗水系数的影响(IV). 牧草与饲料, 2011, 5(4): 8-15.

Ding N, Sun H R, Liu Z B, Shao G W, Shen Y. Study on the effect of irrigation amount on water use efficiency and water consumption coefficient of alfalfa(IV). Journal of Forage and Feed, 2011, 5(4): 8-15. (in Chinese)

[63]Heaton E, Voigt T, Long S P. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass and Bioenergy, 2004, 27(1): 21-30.

[64]Fiasconaro M L, Gogorcena Y, Muñoz F, Andueza D, Sánchez-Díaz M, Antolín M C. Effects of nitrogen source and water availability on stem carbohydrates and cellulosic bioethanol traits of alfalfa plants. Plant Science, 2012, 191-192: 16-23.

[65]谢勇, 孙洪仁, 张新全, 刘爱红, 孙雅源, 刘治波, 丁宁. 坝上地区紫花苜蓿氮、磷、钾肥料效应与推荐施肥量. 中国草地学报, 2012, 34(2): 52-57.

Xie Y, Sun H R, Zhang X Q, Liu A H, Sun Y Y, Liu Z B, Ding N. Effects of N, P and K fertilizer on alfalfa and recommended fertilizer rate in Bashang area. Chinese Journal of Grassland, 2012, 34(2): 52-57. (in Chinese)

[66]Antolín M C, Fiasconaro M L, Sanchez-Díaz M. Relationship between photosynthetic capacity, nitrogen assimilation and nodule metabolism in alfalfa (Medicago sativa) grown with sewage sludge. Journal of Hazardous Materials, 2010, 182(1/3): 210-216.

[67]李丽, 李宁, 盛建东, 王皓. 施氮量和种植密度对紫花苜蓿生长及种子产量的影响. 草地学报, 2012, 20(1): 54-57.

Li L, Li N, Sheng J D, Wang H. Effects of nitrogen fertilizer and planting density on alfalfa growth and seed yield. Acta Agrestia Sinica, 2012, 20(1): 54-57. (in Chinese) 

[68]Rimi F, Macolino S, Leinauer B, Lauriault L M, Ziliotto U. Alfalfa yield and morphology of three fall-dormancy categories harvested at two phenological stages in a subtropical climate. Agronomy Journal, 2010, 102(6): 1578-1585.

[69]Testa G, Gresta F, Cosentino S L. Dry matter and qualitative characteristics of alfalfa as affected by harvest times and soil water content. European Journal Agronomy, 2011, 34(3): 144-152.

[70]Boateng A A, Mullen C A, Goldberg N, Hicks B, Jung H J G, Lamb J F S. Production of bio-oil from alfalfa stems by fluidized-bed fast pyrolysis. Industrial and Engineering Chemistry Research, 2008, 47(12): 4115-4122.

[71]Huisman W, Venturi P, Molenaar J. Costs of supply chains of Miscanthus giganteus. Industrial Crops and Products, 1997, 6(3/4): 353-366.

[72]Sanderson M A, Adler P R. Perennial forages as second generation bioenergy crops. International Journal of Molecular Sciences, 2008, 9(5): 768-788.

[73]Lamb J F S, Sheaffer C C, Rhodes L H, Sulc R M, Undersander D J, Brummer E C. Five decades of alfalfa cultivar improvement: Impact on forage yield, persistence, and nutritive value. Crop Science, 2006, 46(2): 902-909.

[74]Stewart C N Jr, Liu G S. Bioenergy plants in the United States and China. Plant Science, 2011, 181(6): 621-622.

[75]Baucher M, Bernard-Vailhé M A, Chabbert B, Besle J M, Opsomer C, van Montagu M, Botterman J. Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Molecular Biology, 1999, 39(3): 437-447.
[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[3] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[4] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[5] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[6] MA Lin,WEN HongYu,WANG XueMin,GAO HongWen,PANG YongZhen. Cloning and Function Analysis of MsMAX2 Gene in Alfalfa (Medicago sativa L.) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4061-4069.
[7] WANG XiaQing,SONG Wei,ZHANG RuYang,CHEN YiNing,SUN Xuan,ZHAO JiuRan. Genetic Research Advances on Maize Stalk Lodging Resistance [J]. Scientia Agricultura Sinica, 2021, 54(11): 2261-2272.
[8] ZeMin LI,Chen ZHANG,ChongYu ZHANG,GuiGuo ZHANG. The Relationship Between Nutrients and Biological Yield of Different Varieties of Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(6): 1269-1277.
[9] DONG HeHe, LUO YongLi, LI WenQian, WANG YuanYuan, ZHANG QiuXia, CHEN Jin, JIN Min, LI Yong, WANG ZhenLin. Effects of Different Spring Nitrogen Topdressing Modes on Lodging Resistance and Lignin Accumulation of Winter Wheat [J]. Scientia Agricultura Sinica, 2020, 53(21): 4399-4414.
[10] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[11] JIANG Xu,CUI HuiTing,WANG Zhen,ZHANG TieJun,LONG RuiCai,YANG QingChuan,KANG JunMei. Cloning and Function Analysis of MsNST in Lignin and Cellulose Biosynthesis Pathway from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3818-3832.
[12] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[13] GONG Hao,YANG Liu,LI DanDan,LIU GuoFu,XIAO ZhiXin,WU QingYing,CUI GuoWen. Response of Alfalfa Production and Quality to Fertilization and Cutting Frequency and Benefit Analysis in Mollisol Agricultural Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2657-2667.
[14] XIAO ZhiXin,WANG Yang,LIU GuoFu,GONG Hao,LI DanDan,GONG Lin,BAI ZhenJian,CUI GuoWen. Effects of Fertilizing Time in Early Spring on Alfalfa (Medicago sativa) Production Performance and Nutritional Quality in Mollisol Area in Cold Region [J]. Scientia Agricultura Sinica, 2020, 53(13): 2668-2677.
[15] XiaoDong LI,YiShun SHANG,ShiGe LI,GuangJi CHEN,ChengJiang PEI,Fang SUN,XianQin XIONG. The Mechanism of Ectopic Expression of Brassica juncea Multidrug and Toxic Compound Extrusion (BjMATE) to Enhance the Resistance to Acid and Aluminum Stress in Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(1): 18-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!