Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (1): 120-129.doi: 10.3864/j.issn.0578-1752.2015.01.12

• HORTICULTURE • Previous Articles     Next Articles

Effect of Exogenous Spermidine on Levels of Endogenous Hormones and Chloroplast Ultrastructure of Ginger Leaves Under Heat Stress

LI Xiu, GONG Biao, XU Kun   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture, Taian 271018, Shandong
  • Received:2014-02-24 Online:2015-01-01 Published:2015-01-01

Abstract: 【Objective】Ginger is a thermophilic vegetable crop, but not tolerate high temperature. It is easily damaged under high temperature. To study the effect of exogenous spermidine on endogenous hormones and chloroplasts, the relationship among exogenous spermidine, endogenous hormones, and the chloroplast ultrastructure of ginger under heat stress was investigated.【Method】Laiwu Big Ginger was sandy cultured in a climate chamber with 12 h/12 h photoperiod under 28℃/18℃ (normal) and 38℃/28℃ (heat stress) conditions. Ginger root was treated with 0.5 mmol·L-1spermidine. Relative water content, chlorophyll concentration, malondialdehyde content, electrolyte leakage, chlorophyll fluorescence parameters, reactive oxygen content and endogenous hormones metabolism of ginger leaves were investigated on 0, 5, 10, 15 and 20 d after treatment, moreover, the ultrastructures of chloroplasts and thylakoid were observed on 20 d after treatment. 【Result】Under heat stress, chloroplasts and thylakoid of ginger leaves were seriously damaged, and chlorophyll concentration significantly decreased with continuing stress. Chlorophyll fluorescence parameters including Fv/Fm, ФPSII, Fv′/Fm′, qP and P decreased, and NPQ, β/α-1 and D increased, which mainly showed that its photochemical activity of PSII was decreased, so the  and H2O2 accumulated extensively resulted by excess energy, and then the MDA content and electrolyte leakage increased. Under heat stress, superoxide dismutase activity, abscisic acid and proline contents were significantly accumulated and then decreased in different treatment times. Ascorbate peroxidase activity, cytokinin and kinetin content kept a decreasing trend with continuing stress. However, relative water content, chlorophyll concentration, malondialdehyde content and electrolyte leakage of ginger leaves were recovered by exogenous application of spermidine. Besides, it also maintained the integrity of chloroplasts and thylakoid, regulated chlorophyll fluorescence parameters to normale, increased antioxidant enzymes activity and endogenous hormones concentration, and reduced the reactive oxygen content. 【Conclusion】Heat stress can damage ginger leaves, leading to function of chloroplasts and PSII disorder, and reactive oxygen and endogenous hormones abnormity. Exogenous application of spermidine can effectively reduce the damages of ginger caused by heat stress and improve its tolerance to heat stress, involving maintain endogenous hormones regular metabolism and chloroplasts normal physiological function.

Key words: ginger, heat stress, spermidine, chloroplasts, endogenous hormones

[1]    赵德婉, 徐坤, 艾希珍, 郭衍银, 郑永强. 生姜高产栽培技术. 第二次修订版. 北京: 金盾出版社, 2005.
Zhao D W, Xu K, Ai X Z, Guo Y Y, Zheng Y Q. High-Yield Cultivation Techniques of Ginger. Second Revised Edition. Beijing: Jindun Press, 2005. (in Chinese)
[2]    汪炳良, 徐敏, 史庆华, 曹家树. 高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响. 中国农业科学, 2004, 37(8): 1245-1250.
Wang B L, Xu M, Shi Q H, Cao J S. Effects of high temperature stress on antioxidant systems, chlorophyll and chlorophyll flrorescence parameters in early cauliflower leaves. Scientia Agricultura Sinica, 2004, 37(8): 1245-1250. (in Chinese)
[3]    曹刚, 张国斌, 郁继华, 马彦霞. 不同光质LED光源对黄瓜苗期生长及叶绿素荧光参数的影响. 中国农业科学, 2013, 46(6): 1297-1304.
Cao G, Zhang G B, Yu J H, Ma Y X. Effects of different LED light qualities on cucumber seedling growth and chlorophyll fluorescence parameters. Scientia Agricultura Sinica, 2013, 46(6): 1297-1304. (in Chinese)
[4]    Pospíil P, Tyystjärvi E. Molecular mechanism of high temperature- induced inhibition of acceptor side of photosystem II. Photosynthesis Research, 1999, 32: 55-66.
[5]    Zhang M P, Zhang C J, Yu G H, Jiang Y Z, Strasser R J, Yuan Z Y, Yang X S, Chen G X. Changes in chloroplast ultrastructure, fatty acid components of thylakoid membrane and chlorophyll a fluorescence transient in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. Journal of Plant Physiology, 2010, 167: 277-285.
[6]   Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A F. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 2010, 231: 1237-1249.
[7]    Zhang W P, Jiang B A, Li W G, Song H, Yu Y S, Chen J F. Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulturae, 2009, 122: 200-208.
[8]    张帆, 郁继华, 颉建明, 冯致, 张国斌, 李雯琳. 外源 ALA 和 Spd 对低温弱光下辣椒幼苗光合作用及抗氧化系统的影响. 中国农业科学, 2013, 46(11): 2298-2306.
Zhang F, Yu J H, Jie J M, Feng Z, Zhang G B, Li W L. Influence of exogenous ALA and Spd on photosynthesis and antioxidant system of low temperature and poor light affected pepper seedlings. Scientia Agricultura Sinica, 2013, 46(11): 2298-2306. (in Chinese)
[9]    苏晓琼, 王美月, 束胜, 孙锦, 郭世荣. 外源亚精胺对高温胁迫下番茄幼苗快速叶绿素荧光诱导动力学特性的影响. 园艺学报, 2013, 40(12): 2409-2418.
Su X Q, Wang M Y, Shu S, Sun J, Guo S R. Effects of exogenous spd on the fast chlorophyll fluorescence induction dynamics in tomato seedlings under high temperature stress. Acta Horticulturae Sinica, 2013, 40(12): 2409-2418. (in Chinese)
[10]   Gill S S, Tuteja N. Polyamines and abiotic stress tolerance in plants. Plant Signaling and Behavior, 2010, 5: 26-33.
[11]   Farooq M, Wahid A, Lee D J. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiology Plantarum, 2009, 31: 937-945.
[12]   Konstrantinos P A, Imene T, Panagiotis M N, Roubelakis-Angelakis K A. ABA-dependent amine oxidases-drived H2O2 affects stomata conductance. Plant Signaling and Behavior, 2010, 5: 1153-1156.
[13]   Polanská L, Vicankova A, Novakova M, Malbeck J, Dobrev P I, Brzobohaty B, Vankova R, Machackova I. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. Journal of Experimental Botany, 2007, 58: 637-649.
[14]   Kotzabasis K, Fotinou C, Roubelakis-Angelaki K A, Ghanotakis D. Polyamines in the photosynthetic apparatus. Photosynthesis Research, 1993, 38: 83-88.
[15]   Shu S, Guo S R, Sun J, Yuan L Y. Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiologia Plantarum, 2012, 146: 285-296.
[16]   赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科学技术出版社. 2002.
Zhao S J, Shi G A, Dong X C. Techniques of Plant Physiological Experiment. Beijing: Chinese Agricultural Science and Technology Press, 2002. (in Chinese)
[17]   Shu S, Yuan L Y, Guo S R, Sun J, Yuan Y H. Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiology and Biochemistry, 2013, 63: 209-216.
[18]   Xia X J, Wang Y J, Zhou Y H, Tao Y, Mao W H, Shi K, Asami T, Chen Z X, Yu J Q. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 2009, 150(2): 801-814.
[19]   杨卫兵, 王振林, 尹燕枰, 李文阳, 李勇, 陈晓光, 王平, 陈二影, 郭俊祥, 蔡铁, 倪英丽. 外源ABA和GA对小麦籽粒内源激素含量及其灌浆进程的影响. 中国农业科学, 2011, 44(13): 2673-2682.
Yang W B, Wang Z L, Yin Y P, Li W Y, Li Y, Chen X G, Wang P, Chen E Y, Guo J X, Cai T, Ni Y L. Effects of spraying exogenous ABA or GA on the endogenous hormones concentration and filling of wheat grains. Scientia Agricultura Sinica, 2011, 44(13): 2673-2682. (in Chinese)
[20]   华春, 周峰, 丁春霞, 陈全战, 王仁雷, 李萍. 外源亚精胺对NaCl胁迫下毕氏海蓬子光合参数和叶绿体超微结构的影响. 植物资源与环境学报, 2012, 21(2): 89-95.
Hua C, Zhou F, Ding C X, Chen Q Z, Wang R L, Li P. Effects of exogenous spermidine on photosynthetic parameters and chloroplast ultrastructure of Salicornia bigelovii under NaCl stress. Journal of Plant Resources and Environment, 2012, 21(2): 89-95. (in Chinese)
[21]   Berry J A, Björkman O. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1980, 31: 491-543.
[22]   苏秀荣, 王秀峰, 杨凤娟, 魏珉. 硝酸根胁迫对黄瓜幼苗叶片光合速率、PSII光化学效率及光能分配的影响. 应用生态学报, 2007, 18(7): 1441-1446.
Su X R, Wang X F, Yang F J, Wei M. Effects of NO3- stress on photosynthetic rate, photochemical efficiency of PSII and light energy allocation in cucumber seedling leaves. Chinese Journal of Applied Ecology, 2007, 18(7): 1441-1446. (in Chinese)
[23]   He L X, Nada K, Kasukabe Y, Tachibana S. Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant and Cell Physiology, 2002, 43: 196-206.
[24]   师恺, 顾敏, 于海静, 姜玉萍, 周艳虹, 喻景权. 腐胺提高黄瓜根际低氧耐性的生理机理. 中国农业科学, 2009, 42(5):1854-1858.
Shi K, Gu M, Yu H J, Jiang Y P, Zhou Y H, Yu J Q. Physiological mechanism of putrescine enhancement of root-zone hypoxia tolerance in cucumber plants. Scientia Agricultura Sinica, 2009, 42(5): 1854- 1858. (in Chinese)
[25]   李军, 高新昊, 郭世荣, 张润花, 王旭. 外源亚精胺对盐胁迫下黄瓜幼苗光合作用的影响. 生态学杂志, 2007, 26(10): 1595-1599.
Li J, Gao X H, Guo S R, Zhang R H, Wang X. Effects of exogenous spermidine on photosynthesis of salt-stressed Cuellmis sativus seedlings. Chinese Journal of Ecology, 2007, 26(10): 1595-1599. (in Chinese)
[26] Duan H G, Shu Y, Liu D H, Qin D H, Liang H G, Lin H H. Effects of exogenous spermidine on photosystem II of wheat seedlings under water stress. Journal of Integrative Plant Biology, 2006, 48: 920-927.
[27]   Abdelghani M O, Suty L, Chen J N, Renaudin J P, Teyssendier B. Cytokinins modulate the steady-state levels of light-dependent and light-independent proteins and mRNAs in tobacco cell suspensions. Plant Science, 1991, 77: 29-40.
[28]   Brenner W G, Romanov G A, Kǒllmer I, Bǔrkle L, Schmǔlling T. Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. The Plant Journal, 2005, 44: 314-333.
[29]   Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K. A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. The Plant Cell, 2008, 20: 3148-3162.
[30]   Kusano T, Berberich T, Tateda C, Takahashi Y. Polyamines: essential factors for growth and survival. Planta, 2008, 228: 367-381.
[31]   张桂莲, 陈立云, 张顺堂, 刘国华, 唐文邦, 贺治洲, 王明. 抽穗开花期高温对水稻剑叶理化特性的影响. 中国农业科学, 2007, 40(7): 1345-1352.
Zhang G L, Chen L Y, Zhang S T, Liu G H, Tang W B, He Z Z, Wang M. Effects of high temperature on physiological and biochemical characteristics in flag leaf of rice during heading and flowering period. Scientia Agricultura Sinica, 2007, 40(7): 1345-1352. (in Chinese)
[32]   Wang Y, Ma F, Li M, Liang D, Zou J. Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regulation, 2011, 64: 63-74.
[33]   Alcázar R, Cuevas J C, Patron M, Altabella T, Tiburcio A F. Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiologia Plantarum, 2006, 128: 448-455.
[34]   Cvikrová M, Gemperlová L, Dobrá J, Martincová O, Prásil I T, Gubis J, Vanková R. Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Science, 2012, 182: 49-58.
[1] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[2] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[3] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[4] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[5] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[6] LIU RuiYao,HUANG GuoHong,LI HaiYan,LIANG MinMin,LU MingHui. Screening and Functional Analysis in Heat-Tolerance of the Upstream Transcription Factors of Pepper CaHsfA2 [J]. Scientia Agricultura Sinica, 2022, 55(16): 3200-3209.
[7] WANG JunJie,TIAN Xiang,QIN HuiBin,WANG HaiGang,CAO XiaoNing,CHEN Ling,LIU SiChen,QIAO ZhiJun. Regulation Effects of Photoperiod on Growth and Leaf Endogenous Hormones in Broomcorn Millet [J]. Scientia Agricultura Sinica, 2021, 54(2): 286-295.
[8] LI YanLin,SHAHID Iqbal,SHI Ting,SONG Juan,NI ZhaoJun,GAO ZhiHong. Isolation of PmARF17 and Its Regulation Pattern of Endogenous Hormones During Flower Development in Prunus mume [J]. Scientia Agricultura Sinica, 2021, 54(13): 2843-2857.
[9] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[10] Min LIU,Yulin FANG. Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines [J]. Scientia Agricultura Sinica, 2020, 53(7): 1444-1458.
[11] ZHANG AiJing,LI LinQiong,WANG PengJie,GAO YuLong. Effects of Heat Stress on Cell Membrane and Membrane Protein of Escherichia coli [J]. Scientia Agricultura Sinica, 2020, 53(5): 1046-1057.
[12] YUAN XiongKun,JIANG LiLi,TAO ShiYu,ZANG JianJun,WANG JunJun. Research Progresses on Sensitive Index System of Heat Stress in Sows [J]. Scientia Agricultura Sinica, 2020, 53(22): 4691-4699.
[13] HU LiRong, KANG Ling, WANG ShuHui, LI Wei, YAN XinYi, LUO HanPeng, DONG GangHui, WANG XinYu, WANG YaChun, XU Qing. Effects of Cold and Heat Stress on Milk Production Traits and Blood Biochemical Parameters of Holstein Cows in Beijing Area [J]. Scientia Agricultura Sinica, 2018, 51(19): 3791-3799.
[14] HAN JiaLiang, LIU JianXin, LIU HongYun. Effect of Heat Stress on Lactation Performance in Dairy Cows [J]. Scientia Agricultura Sinica, 2018, 51(16): 3162-3170.
[15] GUO YunHui, YU YuanYuan, WEN LiZhu, SUN CuiHui, SUN XianZhi, WANG WenLi, SUN Xia, ZHENG ChengShu. Molecular Basis of the Effects of Nitrate Signal on Root Morphological Structure Changes of Chrysanthemum [J]. Scientia Agricultura Sinica, 2017, 50(9): 1684-1693.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!