Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (16): 3162-3170.doi: 10.3864/j.issn.0578-1752.2018.16.012

;

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Effect of Heat Stress on Lactation Performance in Dairy Cows

HAN JiaLiang, LIU JianXin, LIU HongYun   

  1. Institute of Dairy Science, Zhejiang University, Hangzhou 310058
  • Received:2018-04-10 Online:2018-08-16 Published:2018-08-16

Abstract: With the steady aggravation of global warming, dairy cows face increasing heat stress, which results increasing economic loss to the dairy industry. Heat stress occurs when cows are exposed to extreme heat and cannot maintain their core temperature. Under hot temperature environment, dairy cattle is characterized by increased respiration, heart rate, and rectal temperature and decreased feed intake, which have a negative impact on endocrine system and immune system and seriously reduce milk performance of dairy cows. Previous studies of heat stress in dairy cows focused on its effects on productive performance, especially to alleviate the effect of heat stress by functional feed additives, but the specific mechanism of heat stress is not clear. This paper summarizes the widespread impact of heat stress on milk production and quality of dairy cows in different regions, and introduces the known mechanisms of heat stress from aspects of energy metabolism, endocrine, oxidative stress, apoptosis and autophagy. In the aspect of energy metabolism, heat stress induces a negative energy balance in cows by reducing food intake and inducing disorder in lipid breakdown and energy metabolism; In terms of endocrine system, heat stress affects the hypothalamic-pituitary-adrenal axis / thyroid axis / gonadal axis / growth axis of dairy cows and results in hormonal changes. In oxidative stress, heat stress affects the ROS levels in vivo and activates related defense signal pathways. In the aspect of apoptosis and autophagy, heat stress contributes to the damage of mammary epithelial cells by the expression of apoptosis-related genes and by excessive autophagy. The paper put forward that in the foreseeable future, heat stress will be a major challenge for the dairy industry. It is necessary to establish cows heat stress models to comprehensively investigate the basic mechanisms of heat stress in dairy cows using advanced cellular and molecular techniques. In addition, efforts should be placed to develop new interventions to reduce the damage of hear stress to dairy cows.

Key words: dairy cow, heat stress, lactation performance

[1]    SILANIKOVE N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestock Production Science, 2000: 67(1-2): 1-18.
[2]    周传社, 谭支良, 赵陈锋. 奶牛热应激的生理机制及其调控. 家畜生态学报, 2006(06):173-177.
ZHOU C S, TAN Z L, ZHAO C F. Physiological mechanism and regulation of heat stress in dairy cows. Journal of Domestic Animal Ecology, 2006(06):173-177. (in Chinese)
[3]    DIKMEN S, HANSEN P J. Is the temperature-humidity index the best indicator of heat stress. Journal of Dairy Science, 2009, 1(92): 109-116.
[4]    STEWART M, WILSON M T, SCHAEFER A L, HUDDART F, SUTHERLAND M A. The use of infrared thermography and accelerometers for remote monitoring of dairy cow health and welfare. Journal of Dairy Science, 2017, 100(5):3893-3901.
[5]    ABENI F, GALLI A. Monitoring cow activity and rumination time for an early detection of heat stress in dairy cow. International Journal of Biometeorology, 2017, 61(3):417-425.
[6]    KADZERE C T, MURPHY M R, SILANIKOVE N, MALTZ E. Heat stress in lactating dairy cows: a review. Livestock Production Science, 2002(77):59-91.
[7]    DAHL G E, TAO S, MONTEIRO A P A. Effects of late-gestation heat stress on immunity and performance of calves1. Journal of Dairy Science, 2016, 99(4):3193-3198.
[8]    FABRIS T F, LAPORTA J, CORRA F N, TORRES Y M, KIRK D J, MCLEAN D J, CHAPMAN J D, DAHL G E. Effect of nutritional immunomodulation and heat stress during the dry period on subsequent performance of cows. Journal of Dairy Science, 2017, 100(8):6733-6742.
[9]    GUO W J, ZHEN L, ZHANG J X, LIAN S, SI H F, GUO J R, YANG H M. Effect of feeding Rumen-protected capsule containing niacin, K2SO4, vitamin C, and gamma-aminobutyric acid on heat stress and performance of dairy cows. Journal of Thermal Biology, 2017, 69:249-253.
[10]   FOURNEL S, OUELLET V, CHARBONNEAU É. Practices for alleviating heat stress of dairy cows in humid continental Climates: A Literature Review. Animals, 2017, 7(5):37.
[11]   GARNER J B, DOUGLAS M L, WILLIAMS S R O, WALES W J, MARETT L C, NGUYEN T T T, REICH C M, HAYES B J. Genomic selection improves heat tolerance in dairy cattle. Scientific Reports, 2016, 6(1): 34114.
[12]   GORNIAK T, MEYER U, SÜDEKUM K, DÄNICKE S. Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate. Archives of Animal Nutrition, 2014, 5(68):358-369.
[13]   OMINSKI K H, KENNEDY A D, WITTENBERG K M. Physiological and Production Responses to Feeding Schedule in Lactating Dairy Cows Exposed to Short-Term, Moderate Heat Stress. Journal of Dairy Science, 2002(85):730-737.
[14]   GARCIA A B, ANGELI N, MACHADO L, de CARDOSO F C, GONZALEZ F. Relationships between heat stress and metabolic and milk parameters in dairy cows in southern Brazil. Tropical Animal Health and Production, 2015, 47(5):889-894.
[15]   李朝明, 别应堂, 魏学良. 热应激对荷斯坦和娟姗及娟荷杂交奶牛生产性能的影响. 中国畜牧杂志, 2014(17):77-81.
LI C M, BIE Y T, WEI X L. Effects of heat stress on holstein, jersey and jersey×holstein dairy cows. Chinese Journal of Animal Science, 2014(17):77-81. (in Chinese)
[16]   BERNABUCCI U, BIFFANI S, BUGGIOTTI L, VITALI A, LACETERA N, NARDONE A. The effects of heat stress in Italian Holstein dairy cattle. Journal of Dairy Science, 2014, 97(1):471-486.
[17]   GAO S T, GUO J, QUAN S Y, NAN X M, FERNANDEZ M V S, BAUMGARD L H, BU D P. The effects of heat stress on protein metabolism in lactating Holstein cows. Journal of Dairy Science, 2017, 100(6):5040-5049.
[18]   BAHASHWAN S. Effect of cold and hot seasons on fat, protein and lactose of Dhofari cow’s milk. Net Journal of Agricultural Science, 2014, 2(1):47-49.
[19]   JOKSIMOVIC-TODOROVIC M, DAVIDOVIC V, HRISTOV S, STANKOVIC B. Effect of heat stress on milk production in dairy cows. Biotechnology in Animal Husbandry, 2011, 27(3):1017-1023.
[20]   COWLEY F C, BARBER D G, HOULIHAN A V, POPPI D P. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. Journal of Dairy Science, 2015, 98(4):2356-2368.
[21]   HU H, ZHANG Y, ZHENG N, CHENG J, WANG J. The effect of heat stress on gene expression and synthesis of heat-shock and milk proteins in bovine mammary epithelial cells. Animal Science Journal, 2016, 87(1):84-91.
[22]   LIU Z, EZERNIEKS V, WANG J, ARACHCHILLAGE N W, GARNER J B, WALES W J, COCKS B G, ROCHFORT S. Heat stress in dairy cattle alters lipid composition of milk. Scientific Reports, 2017, 7(1):1-10.
[23]   SA?NCHEZJUANES F, ALONSO J, ZANCADA L, HUESO P. Distribution and fatty acid content of phospholipids from bovine milk and bovine milk fat globule membranes. International Dairy Journal, 2009, 5(19):273-278.
[24]   HAGIYA K, HAYASAKA K, YAMAZAKI T, SHIRAI T, OSAWA T, TERAWAKI Y, NAGAMINE Y, MASUDA Y, SUZUKI M. Effects of heat stress on production, somatic cell score and conception rate in Holsteins. Animal Science Journal, 2017, 88(1):3-10.
[25]   WEST J W. Effects of heat-stress on production in dairy cattle. Journal of Dairy Science, 2003, 86:2131-2144.
[26]   DE ANDRADE FERRAZZA R, MOGOLLÓN GARCIA H D, VALLEJO ARISTIZÁBAL V H, de SOUZA NOGUEIRA C, VERÍSSIMO C J, SARTORI J R, SARTORI R, PINHEIRO FERREIRA J C. Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress. Journal of Thermal Biology, 2017, 66:68-80.
[27]   YAN F, XUE B, SONG L, XIAO J, DING S, HU X, BU D, YAN T. Effect of dietary net energy concentration on dry matter intake and energy partition in cows in mid-lactation under heat stress. Animal Science Journal, 2016, 87(11):1352-1362.
[28]   FUJIMOTO K, FUKAGAWA K, SAKATA T, TSO P. Suppression of food intake by apolipoprotein A-IV is mediated through the central nervous system in rats. Journal of Clinical Investigation, 1993, 91(4):1830-1833.
[29]   MEMON S B, LIAN L, GADAHI J A, GENLIN W. Proteomic response of mouse pituitary gland under heat stress revealed active regulation of stress responsive proteins. Journal of Thermal Biology, 2016, 61:82-90.
[30]   WHEELOCK J B, RHOADS R P, VANBAALE M J, SANDERS S R, BAUMGARD L H. Effects of heat stress on energetic metabolism in lactating Holstein cows1. Journal of Dairy Science, 2010, 93(2): 644-655.
[31]   O BRIEN M D, RHOADS R P, SANDERS S R, DUFF G C, BAUMGARD L H. Metabolic adaptations to heat stress in growing cattle. Domestic Animal Endocrinology, 2010, 38(2):86-94.
[32]   GUO J, GAO S, QUAN S, ZHANG Y, BU D, WANG J. Blood amino acids profile responding to heat stress in dairy cows. Asian-Australasian Journal of Animal Sciences, 2018, 31(1): 47-53.
[33]   BAUMGARD L H, WHEELOCK J B, SANDERS S R, MOORE C E, GREEN H B, WALDRON M R, RHOADS R P. Postabsorptive carbohydrate adaptations to heat stress and monensin supplementation in lactating Holstein cows1. Journal of Dairy Science, 2011, 94(11):5620-5633.
[34]   MIN L, ZHAO S, TIAN H, ZHOU X, ZHANG Y, LI S, YANG H, ZHENG N, WANG J. Metabolic responses and ‘omics’ technologies for elucidating the effects of heat stress in dairy cows. International Journal of Biometeorology, 2016. DOI :10.1007/s00484-016-1283-z.
[35]   TIAN H, ZHENG N, WANG W, CHENG J, LI S, ZHANG Y, WANG J. Integrated metabolomics study of the milk of heat-stressed lactating dairy cows. Scientific Reports, 2016, 6:24208.
[36]   FAYLON M P, BAUMGARD L H, RHOADS R P, SPURLOCK D M. Effects of acute heat stress on lipid metabolism of bovine primary adipocytes. Journal of Dairy Science, 2015, 98(12):8732-8740.
[37]   KOCH F, LAMP O, ESLAMIZAD M, WEITZEL J, KUHLA B. Metabolic response to heat stress in late-pregnant and early lactation dairy cows: implications to liver-muscle crosstalk. PLoS ONE, 2016, 11(8):e160912.
[38]   MIN L, CHENG J B, SHI B L, YANG H J, ZHENG N, WANG J Q. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows. Journal of Zhejiang University-Science B, 2015, 16(6):541-548.
[39]   GWINN D M, SHACKELFORD D B, EGAN D F, MIHAYLOVA M M, MERY A, VASQUEZ D S, TURK B E, SHAW R J. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell, 2008, 30(2):214-226.
[40]   ARAMBURU J, ORTELLS M C, TEJEDOR S, BUXADE M, LOPEZ-RODRIGUEZ C. Transcriptional regulation of the stress response by mTOR. Science Signaling, 2014, 7(332):re2.
[41]   RHOADS M L, RHOADS R P, VANBAALE M J, COLLIER R J, SANDERS S R, WEBER W J, CROOKER B A, BAUMGARD L H. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. production, metabolism, and aspects of circulating somatotropin. Journal of Dairy Science, 2009, 92(5):1986-1997.
[42]   MURNEY R, STELWAGEN K, WHEELER T T, MARGERISON J K, SINGH K. The effects of milking frequency in early lactation on milk yield, mammary cell turnover, and secretory activity in grazing dairy cows. Journal of Dairy Science, 2015, 98(1):305-311.
[43]   LEROY J L M R, RIZOS D, STURMEY R, BOSSAERT P. Intrafollicular conditions as a major link between maternal metabolism and oocyte quality: a focus on dairy cow fertility. Reproduction, Fertility and Development, 2012(24):1-12.
[44]   YADAV B, PANDEY V, YADAV S, SINGH Y, KUMAR V, SIROHI R. Effect of misting and wallowing cooling systems on milk yield, blood and physiological variables during heat stress in lactating Murrah buffalo. Journal of Animal Science and Technology, 2016, 58(1): 2.
[45]   IHSANULLAH, QURESHI M S, SUHAIL S M, AKHTAR S, KHAN R U. Postpartum endocrine activities, metabolic attributes and milk yield are influenced by thermal stress in crossbred dairy cows. International Journal of Biometeorology, 2017, 61:1-9.
[46]   VUJANAC IVAN H J Š H. Effect of heat stress on metabolic and endocrine status of dairy cows. Days of Veterinary Medicine, 2012: 11-14.
[47]   王选慧, 任作宝. 浅谈热应激对奶牛的影响及调控措施. 中兽医医药杂志, 2014(04):76-78.
WAN X H, REN Z B. Discussion on the influences of heat stress on dairy cattle and control measures. Journal of Traditional Chinese Veterinary Medicine, 2014(04):76-78. (in Chinese)
[48]   TITTO C G A, NEGR O J O A, CANAES T D S, TITTO R M, LEME-DOS SANTOS T M D C, HENRIQUE F L, CALVIELLO R F, PEREIRA A M F, TITTO E A L. Heat stress and ACTH administration on cortisol and insulin-like growth factor I (IGF-I) levels in lactating Holstein cows. Journal of Applied Animal Research, 2015, 45(1):1-7.
[49]   LÓPEZ E, MELLADO M, MARTÍNEZ A M, VÉLIZ F G, GARCÍA J E, de SANTIAGO A, CARRILLO E. Stress-related hormonal alterations, growth and pelleted starter intake in pre-weaning Holstein calves in response to thermal stress. International Journal of Biometeorology, 2017.DOI:10.1007/s00484-017-1458-2.
[50]   MULLUR R, LIU Y Y, BRENT G A. Thyroid hormone regulation of metabolism. Physiological Reviews, 2014, 94(2):355-382.
[51]   WEITZEL J M, VIERGUTZ T, ALBRECHT D, BRUCKMAIER R, SCHMICKE M, TUCHSCHERER A, KOCH F, KUHLA B. Hepatic thyroid signaling of heat-stressed late pregnant and early lactating cows. Journal of Endocrinology, 2017, 234(2):129-141.
[52]   KHODAEI-MOTLAGH M, SHAHNEH A Z, MASOUMI R, DERENSIS F. Alterations in reproductive hormones during heat stress in dairy cattle. African Journal of Biotechnology, 2011, 29(10): 5552-5558.
[53]   QU M, WEI S, CHEN Z, WANG G, ZHENG Y, YAN P. Differences of hormones involved in adipose metabolism and lactation between high and low producing Holstein cows during heat stress. Animal Nutrition, 2015, 1(4):339-343.
[54]   ROTH Z, WOLFENSON D. Comparing the effects of heat stress and mastitis on ovarian function in lactating cows: basic and applied aspects. Domestic Animal Endocrinology, 2016, 56:S218-S227.
[55]   LI L, WU J, LUO M, SUN Y, WANG G. The effect of heat stress on gene expression, synthesis of steroids, and apoptosis in bovine granulosa cells. Cell Stress and Chaperones, 2016, 21(3):467-475.
[56]   SALAZAR M, LERMA-ORTIZ A, HOOKS G M, ASHLEY A K, ASHLEY R L. Progestin-mediated activation of MAPK and AKT in nuclear progesterone receptor negative breast epithelial cells: The role of membrane progesterone receptors. Gene, 2016, 591(1):6-13.
[57]   RHOADS M L, KIM J W, COLLIER R J, CROOKER B A, BOISCLAIR Y R, BAUMGARD L H, RHOADS R P. Effects of heat stress and nutrition on lactating Holstein cows: II. Aspects of hepatic growth hormone responsiveness. Journal of Dairy Science, 2010, 93(1): 170-179.
[58]   李林, 艾阳, 谢正露, 曹洋, 张源淑. 热应激状态下泌乳奶牛通过激活GHIGF-I轴增强糖异生变化.中国农业科学, 2016(15): 3046-3053.
LI L, AI Y, XIE Z L,CAO Y, ZHANG Y S. Lactating dairy cows under heat stress enhanced gluconeogenesis by activating the GHIGF-I axis. Scientia Agricultura Sinica, 2016(15):3046-3053. (in Chinese)
[59]   AKERS R M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows. Journal of Dairy Science, 2006, 89: 1222-1234.
[60]   MARTINDALE J L, HOLBROOK N J. Cellular response to oxidative stress: signaling for suicide and survival. Journal of Cellular Physiology, 2002, 192(1):1-15.
[61]   SAKATANI M, BALBOULA A Z, YAMANAKA K, TAKAHASHI M. Effect of summer heat environment on body temperature, estrous cycles and blood antioxidant levels in Japanese Black cow. Animal Science Journal, 2012, 83(5):394-402.
[62] WAIZ S A, RAIES-UL-HAQ M, DHANDA S, KUMAR A, GOUD T S, CHAUHAN M S, UPADHYAY R C. Heat stress and antioxidant enzyme activity in bubaline (Bubalus bubalis) oocytes during in vitro maturation. International Journal of Biometeorology, 2016, 60(9): 1357-1366.
[63]   权素玉, 张源淑, 卜登攀. 热应激造成奶牛乳腺上皮细胞损伤并影响乳合成相关载体的基因表达. 畜牧兽医学报, 2016(08): 1704-1713.
QUAN S Y, ZHANG Y S, BU D P. Heat stress-induced cell injury and effects on the gene expression of milk synthesis-related transporters in dairy cow. Chinese Journal of Animal and Veterinary Sciences, 2016(08):1704-1713. (in Chinese)
[64]   TREVISAN M, BROWNE R, RAM M, MUTI P, FREUDENHEIM J, CAROSELLA A M, ARMSTRONG D. Correlates of markers of oxidative status in the general population. American Journal of Epidemiology, 2001, 4(154):348-356.
[65]   HOLMSTRÖM K M, FINKEL T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature Reviews Molecular Cell Biology, 2014, 15(6):411-421.
[66]   LI L, SUN Y, WU J, LI X, LUO M, WANG G. The global effect of heat on gene expression in cultured bovine mammary epithelial cells. Cell Stress and Chaperones, 2015, 20(2):381-389.
[67]   AKBARIAN A, MICHIELS J, DEGROOTE J, MAJDEDDIN M, GOLIAN A, De SMET S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. Journal of Animal Science and Biotechnology, 2016, 7(1):37.
[68]   BELHADJ SLIMEN I, NAJAR T, GHRAM A, ABDRRABBA M. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. Journal of Animal Physiology and Animal Nutrition, 2016, 100(3):401-412.
[69]   JIN X L, WANG K, LIU L, LIU H Y, ZHAO F Q, LIU J X. Nuclear factor-like factor 2-antioxidant response element signaling activation by tert-butylhydroquinone attenuates acute heat stress in bovine mammary epithelial cells. Journal of Dairy Science, 2016, 99(11): 9094-9103.
[70]   ZACHUT M, KRA G, LIVSHITZ L, PORTNICK Y, YAKOBY S, FRIEDLANDER G, LEVIN Y. Seasonal heat stress affects adipose tissue proteome toward enrichment of the Nrf2-mediated oxidative stress response in late-pregnant dairy cows. Journal of Proteomics, 2017, 158:52-61.
[71]   LIU H, ZHAO K, ZHOU M, WANG C, YE J, LIU J. Cytoprotection of vitamin E on hyperthermia-induced damage in bovine mammary epithelial cells. Journal of Thermal Biology, 2010, 35(5):250-253.
[72]   CONG X, ZHANG Q, LI H, JIANG Z, CAO R, GAO S, TIAN W. Puerarin ameliorates heat stress–induced oxidative damage and apoptosis in bovine Sertoli cells by suppressing ROS production and upregulating Hsp72 expression. Theriogenology, 2017, 88:215-227.
[73]   杜娟, 狄和双, 郭亮, 李忠浩, 蔡亚非, 王根林. 高温对乳腺上皮细胞生长及凋亡的影响. 动物学报, 2006, 5(52):959-965.
DU J, DI H S, GUO L, LI Z H, CAI Y F, WANG G L. The effect of high temperature on maternal Mary epithelial cells proliferation and apoptosis. Acta Zoologica Sinica, 2006, 5(52):959-965. (in Chinese)
[74]   YI G, LI L, LUO M, HE X, ZOU Z, GU Z, SU L. Heat stress induces intestinal injury through lysosome- and mitochondria-dependent pathway in vivo and in vitro. Oncotarget, 2017, 25(8):40741-40755.
[75]   HU H, WANG J, GAO H, LI S, ZHANG Y, ZHENG N. Heat-induced apoptosis and gene expression in bovine mammary epithelial cells. Animal Production Science, 2016, 56(5):918.
[76]   黄帆, 吕秋凤. 热应激诱导的氧化应激对动物肠道组织的损伤. 动物营养学报, 201729( 6):1856-1860.
HUANG F, LÜ Q F. Oxidative stress induced by heat stress: injury on intestinal tissue of animals. Chinese Journal of Animal Nutrition, 2017, 29(6) :1856-1860. (in Chinese)
[77]   GU Z T, WANG H, LI L, LIU Y S, DENG X B, HUO S F, YUAN F F, LIU Z F, TONG H S, SU L. Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell. Scientific Reports, 2014, 4(3) :4469.
[78]   BOUCHAMA A, AZIZ M A, MAHRI S A, GABERE M N, DLAMY M A, MOHAMMAD S, ABBAD M A, HUSSEIN M. A model of exposure to extreme environmental heat uncovers the human transcriptome to heat stress. Scientific Reports, 2017, 7(1) :9429
[79]   CHEN Z, WU Y, WANG P, WU Y, LI Z, ZHAO Y, ZHOU J, ZHU C, CAO C, MAO Y, XU F, WANG B, CORMIER S A, YING S, LI W, SHEN H. Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium. Autophagy, 2015, 12(2):297-311.
[80]   CHANDRIKA B B, YANG C, OU Y, FENG X, MUHOZA D, HOLMES A F, THEUS S, DESHMUKH S, HAUN R S, KAUSHAL G P. Endoplasmic reticulum stress-induced autophagy provides cytoprotection from chemical hypoxia and oxidant injury and ameliorates renal ischemia-reperfusion injury. PLoS ONE, 2015, 10(10): e140025.
[81]   WOHLGEMUTH S E, RAMIREZ-LEE Y, TAO S, MONTEIRO A P A, AHMED B M, DAHL G E. Short communication: Effect of heat stress on markers of autophagy in the mammary gland during the dry period. Journal of Dairy Science, 2016, 99(6):4875-4880.
[82]   ZIELNIOK K, SOBOLEWSKA A, GAJEWSKA M. Mechanisms of autophagy induction by sex steroids in bovine mammary epithelial cells. Journal of Molecular Endocrinology, 2017:16-247.
[83]   SOBOLEWSKA A, GAJEWSKA M, ZARZY?SKA J, GAJKOWSKA B, MOTYL T. IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway. European Journal of Cell Biology, 2009, 88(2):117-130.
[84]   TOMASZ M, GAJEWSKA M, ZARZYNSKA J, GAJKOWSKA A, BARBARA S. Regulation of autophagy in bovine mammary epithelial cells. Autophagy, 2007, 5(3):484-486.
[85]   MIAO E A, LEAF I A, TREUTING P M, MAO D P, DORS M, SARKAR A, WARREN S E, WEWERS M D, ADEREM A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunology, 2010, 11(12): 1136-1142.
[86]   GENG Y, MA Q, LIU Y, PENG N, YUAN F. Heatstroke induces liver injury via IL-1b and HMGB1-induced pyroptosis. Journal of Hepatology, 2015, 3(63):622-633.
[87]   MIN L, ZHENG N, ZHAO S, CHENG J, YANG Y, ZHANG Y, YANG H, WANG J. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis. Biochemical and Biophysical Research Communications, 2016, 471(2): 296-302.
[1] TANG YuLin, ZHANG Bo, REN Man, ZHANG RuiXue, QIN JunJie, ZHU Hao, GUO YanSheng. Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology [J]. Scientia Agricultura Sinica, 2023, 56(2): 368-378.
[2] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[3] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[4] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[5] LIU RuiYao,HUANG GuoHong,LI HaiYan,LIANG MinMin,LU MingHui. Screening and Functional Analysis in Heat-Tolerance of the Upstream Transcription Factors of Pepper CaHsfA2 [J]. Scientia Agricultura Sinica, 2022, 55(16): 3200-3209.
[6] Min LIU,Yulin FANG. Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines [J]. Scientia Agricultura Sinica, 2020, 53(7): 1444-1458.
[7] ZHANG AiJing,LI LinQiong,WANG PengJie,GAO YuLong. Effects of Heat Stress on Cell Membrane and Membrane Protein of Escherichia coli [J]. Scientia Agricultura Sinica, 2020, 53(5): 1046-1057.
[8] YUAN XiongKun,JIANG LiLi,TAO ShiYu,ZANG JianJun,WANG JunJun. Research Progresses on Sensitive Index System of Heat Stress in Sows [J]. Scientia Agricultura Sinica, 2020, 53(22): 4691-4699.
[9] YAN ChaoQun,LI ShuaiPeng,ZHANG Shen,XIE Shun,WEI KaiYun,HUANG XianHui. Residue Depletion Study and Withdrawal Period for Cefalonium Intramammary Infusion (Dry cow) in Bovine Milk [J]. Scientia Agricultura Sinica, 2019, 52(2): 367-375.
[10] WANG LiFang, ,AO ChangJin. The Effects of Artemisia annua Extracts on the Rumen Fermentation in Dairy Cows [J]. Scientia Agricultura Sinica, 2018, 51(23): 4548-4555.
[11] HU LiRong, KANG Ling, WANG ShuHui, LI Wei, YAN XinYi, LUO HanPeng, DONG GangHui, WANG XinYu, WANG YaChun, XU Qing. Effects of Cold and Heat Stress on Milk Production Traits and Blood Biochemical Parameters of Holstein Cows in Beijing Area [J]. Scientia Agricultura Sinica, 2018, 51(19): 3791-3799.
[12] FAN XiaoRui, ZHANG Zhen, XI HuaMing, LIANG YaJun, HE JunPing. Effect of Heat Stress on the Expression of Cyt-C and Caspase-3 in Boar Testis [J]. Scientia Agricultura Sinica, 2017, 50(5): 924-931.
[13] SHEN LiuHong, XIAO JinBang, WU XiaoFeng, JIANG SiXun, JIANG Tao, DENG JunLiang, ZUO ZhiCai, YU ShuMin, CAO SuiZhong . Effects of Compound Natural Plant Preparation on Milk Withdrawal and Galactin in Dairy Cows [J]. Scientia Agricultura Sinica, 2017, 50(18): 3620-3630.
[14] FAN ZiLing, XU ChuChu, SHU Shi, XIAO XinHuan, WANG Gang, BAI YunLong, ZHANG Jiang, ZHAO Chang, XIA Cheng. Plasma Metabolic Profiling of Postpartum Dairy Cows with Inactive Ovaries Based on GC/MS Technique [J]. Scientia Agricultura Sinica, 2017, 50(15): 3042-3051.
[15] YANG Huan, SHEN Xin, LU DaLei, LU WeiPing. Effects of Heat Stress Durations at Grain Formation Stage on Grain Yield and Starch Quality of Waxy Maize [J]. Scientia Agricultura Sinica, 2017, 50(11): 2071-2082.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!