Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (1): 55-62.doi: 10.3864/j.issn.0578-1752.2015.01.06

• PLANT PROTECTION • Previous Articles     Next Articles

Establishment of SYBR Green I Real-Time PCR for Quantitatively Detecting Rhizoctonia cerealis in Winter Wheat

SUN Bing-jian, CHEN Qing-qing, YUAN Hong-xia, SHI Yan, LI Hong-lian   

  1. College of Plant Protection, Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002
  • Received:2014-06-24 Online:2015-01-01 Published:2015-01-01

Abstract: 【Objective】Wheat sharp eyespot (WSE) caused by Rhizoctonia cerealis is one of the most important soil-born diseases on wheat in China. Early accurate quantitative detection is a foundation of forecast and control. Traditional method of organization isolation and identification of pathogen is time consuming, complicated and can’t be accurately quantified. In order to implement the early and quick quantitative determination of wheat sharp eyespot, a SYBR Green I real-time PCR method of R. cerealis was established based on the pathogen sequence information.【Method】 Based on the β-tubilin of R. cerealis, a pair of specific primers was designed. The SYBR Green I real-time PCR reaction system was established and optimized. The sensitivity, specificity and repeatability of the system were also evaluated, and RBipolaris sorokiniana, Fusarium graminearum, F. pseudograminearum were used for control fungi. The indoor potted plants of wheat which infected by R. cerealis were detected with optimized reaction system after inoculated for 5, 10 and 60 days, respectively.【Result】The primers were of great specificity, the specific PCR fragment was amplified from the DNA of R. cerealis isolates, but not from the DNA of other fungal isolates by conventional PCR. The real-time PCR assays also did not amplify DNA from control fungi. The sensitivity of conventional PCR was 6.5×103 copies/μL plasmid, while the sensitivity of real-time PCR was 6.5×102 copies/μL. The standard curve established by recombinant plasmid showed a fine linear relationship between threshold cycle and template concentration. The melt curve was specific with the correlation coefficient of 0.997 and with high amplification efficiency (0.91). For the indoor potted experiments, the detection results of real-time PCR of infected wheat samples, were showed a significant positive correlation with disease index and inoculum, respectively. 【Conclusion】 The developed real-time PCR assay for R. cerealis is fast, highly specific, sensitive, and reproducible. This method can be used to detect R. cerealis in wheat, and guidance prediction and control of wheat sharp eyespot.. cerealis, R. solani, AG-A, AG-F, Gaeumannomyces graminis var. tritici,

Key words: Rhizoctonia cerealis, SYBR Green I, real-time PCR, early detection

[1]    张会云, 陈荣振, 冯国华, 刘东涛, 王静, 王晓军, 楼辰军, 张凤. 中国小麦纹枯病的研究现状与展望. 麦类作物学报, 2007, 27(6): 1150-1153.
Zhang H Y, Chen R Z, Feng G H, Liu D T, Wang J, Wang X J, Lou C J, Zhang F. Research advances and prospect on wheat sharp eyespot in China. Journal of Triticeae Crops, 2007, 27(6): 1150-1153. (in Chinese)
[2]    陈浩梁. 小麦纹枯病的发生与危害探析. 农业灾害研究, 2011, 1(2): 7-12.
Chen H L. Analysis on occurrence and damage of wheat sheath blight. Journal of Agricultural Catastrophology, 2011, 1(2): 7-12. (in Chinese)
[3]    汪敏, 吕柏林, 邢小萍, 李洪连. 河南省小麦纹枯病菌的群体组成及其致病力分化研究. 植物病理学报, 2011, 41(5): 556-560.
Wang M, Lü B L, Xing X P, Li H L. Composition and virulence variation of the pathogen of wheat sharp eyespot from Henan Province. Acta Phytopathologica Sinica, 2011, 41(5): 556-560. (in Chinese)
[4]    史建荣, 王裕中, 沈素文, 陈怀谷. 江苏省小麦纹枯病菌致病力研究. 江苏农业学报, 1997, 13(3): 188-190.
Shi J R, Wang Y Z, Shen S W, Chen H G. Pathogenicity of Rhizoctonia cerealis to wheat in Jiangsu Province. Jiangsu Journal of Agricultural Sciences, 1997, 13(3): 188-190. (in Chinese)
[5]    陈莹, 李伟, 张晓祥, 张伯桥, 于汉寿, 陈怀谷. 中国北纬33度地区小麦纹枯病菌的群体组成及致病力研究. 麦类作物学报, 2009, 29(6): 1110-1114.
Chen Y, Li W, Zhang X X, Zhang B Q, Yu H S, Chen H G. Composition and virulence of pathogen of wheat sharp eyespot in north latitude 33° of China. Journal of Triticeae Crops, 2009, 29(6): 1110-1114. (in Chinese)
[6]    Nicholson P, Parry D W. Development and use of a PCR assay to detect Rhizoctonia cerealis, the cause of sharp eyespot in wheat. Plant Pathology, 1996, 45: 872-883.
[7]    陈怀谷, 方正, 陈厚德, 林玲, 王裕中. 小麦纹枯病菌的分子检测. 植物保护学报, 2005, 32(3): 261-265.
Chen H G, Fang Z, Chen H D, Lin L, Wang Y Z. PCR-based detection of Rhizoctonia cerealis. Acta Phytophylacica Sinica, 2005, 32(3): 261-265. (in Chinese)
[8]    徐娜娜, 李鹏昌, 于金凤. 应用real-time PCR定量检测土壤中小麦纹枯病菌方法的建立. 山东农业科学, 2014, 46(3): 106-109.
Xu N N, Li C P, Yu J F. Quantitative detection of Rhizoctonia cerealis in soil by real-time PCR. Shandong Agricultural Sciences, 2014, 46(3): 106-109. (in Chinese)
[9]    陆琼娴, 杨慧勇, 王兵, 李飞凤, 史建荣, 宋玉立, 杨崇良. 小麦茎基部土传真菌病害的分子诊断. 麦类作物学报, 2008, 28(3): 531-536.
Lu Q X, Yang H Y, Wang B, Li F F, Shi J R, Song Y L, Yang C L. Diagnosis of soilborne fungal diseases in wheat. Journal of Triticeae Crops, 2008, 28(3): 531-536. (in Chinese)
[10]   潘娟娟, 骆勇, 黄冲, 孙振宇, 赵磊, 闫佳会, 马占鸿. 应用real-time PCR定量检测小麦条锈菌潜伏侵染量方法的建立. 植物病理学报, 2010, 40(5): 504-510.
Pan J J, Luo Y, Huang C, Sun Z Y, Zhao L, Yan J H, Ma Z H. Quantification of latent infections of wheat stripe rust by using real-time PCR. Acta Phytopathologica Sinica, 2010, 40(5): 504-510. (in Chinese)
[11]   闫佳会, 骆勇, 潘娟娟, 王海光, 金社林, 曹世勤, 马占鸿. 应用real-time PCR定量检测田间小麦条锈菌潜伏侵染的研究. 植物病理学报, 2011, 41(6): 618-625.
Yan J H , Luo Y, Pan J J, Wang H G, Jin S L, Cao S Q, Ma Z H. Quantification of latent infection of wheat stripe rust in the fields using real-time PCR. Acta Phytopathologica Sinica, 2011, 41(6): 618-625. (in Chinese)
[12]   Nicholson P, Turner1 A S, Edwards S G, Bateman G L, Morgan L W, Parry D W, Marshall J, Nuttall M. Development of stem-base pathogens on different cultivars of winter wheat determined by quantitative PCR. European Journal of Plant Pathology,2002, 108: 163-177.
[13]   肖蕊, 余真真, Elsharawy A A, 魏锋, 杨家荣. 土壤中棉花黄萎病菌SYBR Green I荧光RT-PCR定量检测技术研究. 菌物学报, 2011, 30(4): 598-603.
Xiao R, Yu Z Z, Elsharawy A A, Wei F, Yang J R. SYBR green I real time RT-PCR assay for quantitatively detecting the occurrence of Verticillium dahliae of cotton in naturally infested soil. Mycosystema, 2011, 30(4): 598-603. (in Chinese)
[14]   魏琪, 胡林双, 董学志, 闵凡祥, 王晓丹, 李凤兰, 郭梅, 芦娜, 李学湛. 马铃薯环腐病菌real-time Taqman-PCR检测体系的建立. 中国马铃薯, 2010, 24(5): 301-305.
Wei Q, Hu L S, Dong X Z, Min F X, Wang X D, Li F L, Guo M, Lu N, Li X Z. Establishment of fluorescent quantitation PCR detection system (Taqman) for Clavibacer michiganensis subsp. sepedonicus. Chinese Potato, 2010, 24(5): 301-305. (in Chinese)
[15]   李彬, 粟寒, 吴翠萍, 周明华, 安榆林. 一种豇豆重花叶病毒IC-RT real-time PCR检测方法的建立. 浙江大学学报: 农业与生命科学版, 2010, 36(5): 491-496.
Li B, Su H, Wu C P, Zhou M H, An Y L. Development of IC-RT real-time PCR method for detection of Cowpea severe mosaic virus. Journal of Zhejiang University: Agriculture & Life Sciences, 2010, 36(5): 491-496. (in Chinese)
[16]   赵晓丽, 周琦, 孙宁, 邓丛良. 啤酒花矮化类病毒实时荧光定量RT-PCR检测方法的建立与应用. 植物保护学报, 2013, 40(4): 309-314.
Zhao X L, Zhou Q, Sun N, Deng C L. Development and application of RT-qPCR assay for detection of HSVd. Acta Phytophylacica Sinica, 2013, 40(4): 309-314. (in Chinese)
[17]   邹勤, 周彦, 李中安, 周常勇, 刘永清, 苏华楠. 应用real-time RT-PCR监测柑橘衰退病毒强、弱毒株的时序变化. 园艺学报, 2011, 38(11): 2193-2198.
Zou Q, Zhou Y, Li Z A, Zhou C Y, Liu Y Q, Su H N. Monitoring the temporal change of the mild and severe strain of Citrus tristeza virus by real-time RT-PCR. Acta Horticulturae Sinica, 2011, 38(11): 2193-2198. (in Chinese)
[18]   Guo Y P, Li W, Sun H Y, Wang N, Yu H S. Chen H G. Detection and quantification of Rhizoctonia cerealis in soil using real-time PCR. Journal of General Plant Pathology, 2012, 78: 247-254.
[19]   Okubara P A, Schroeder K L, Paulitz T C. Identification and quantification of Rhizoctonia solani and R. oryzae using real-time polymerase chain reaction. Phytopathology, 2008, 98(7): 837-847.
[20]   Sayler R J, Yang Y. Detection and quantification of Rhizoctonia solani AG-1 IA, the rice sheath blight pathogen, in rice using real-time PCR. Plant Disease, 2007, 91: 1663-1668.
[21]   Hogg A C, Johnston R H, Johnston J A, Klouser L, Kephart K D, Dyer A T. Monitoring Fusarium crown rot populations in spring wheat residues using quantitative real-time polymerase chain reaction. Phytopathology, 2010, 100(1): 49-57.
[22]   Gao X, Jackson T A, Lambert K N, Li S, Hartman G L, Niblack T L. Detection and quantification of Fusarium solani f. sp. glycines in soybean roots with real-time quantitative polymerase chain reaction. Plant Disease, 2004, 88(12): 1372-1380.
[23]   陈清清, 孙炳剑, 袁虹霞, 施艳, 李洪连. 小麦根腐病菌索氏平脐蠕孢SYBR Green I实时荧光定量PCR检测技术研究. 菌物学报, 2014, 33(3): 690-696.
Chen Q Q, Sun B J, Yuan H X, Shi Y, Li H L. Quantitative detection of Bipolaris sorokiniana in winter wheat based on SYBR Green I real-time PCR. Mycosystema, 2014, 33(3): 690-696. (in Chinese)
[24]   胡浩, 殷幼平, 张利平, 赵云, 夏玉先, 王中康, 覃健. 柑橘黄龙病的常规PCR及荧光定量PCR检测. 中国农业科学, 2006, 39(12): 2491-2497.
Hu H, Yin Y P, Zhang L P, Zhao Y, Xia Y X, Wang Z K, Qin J. Detection of citrus Huanglongbing by conventional and two fluorescence quantitative PCR assays. Scientia Agricultura Sinica, 2006, 39(12): 2491-2497. (in Chinese)
[25]   Li Y, Lawrence G W, Lu S, Balbalian C, Klink V P. Quantitative field testing Heterodera glycines from metagenomic DNA samples isolated directly from soil under agronomic production. PloS One, 2014, 9(2): e89887.
[26]   王念武, 王婷, 沈建国, 胡方平. 基于锁式探针的番茄溃疡病菌实时荧光PCR快速检测. 中国农业科学, 2014, 47(5): 903-911.
Wang N W, Wang T, Shen J G, Hu F P. Rapid detection for Clavibacter michiganensis subsp. michiganensis using real-time PCR based on padlock probe. Scientia Agricultura Sinica, 2014, 47(5): 903-911. (in Chinese)
[27]   廖晓兰, 朱水芳, 赵文军, 罗宽, 漆艳香. 水稻白叶枯病菌和水稻细菌性条斑病菌的实时荧光PCR快速检测鉴定. 微生物学报, 2003, 43(5): 626-634.
Liao X L, Zhu S F, Zhao W J, Luo K, Qi Y X. Detection and identification of Xanthominas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola by real-time fluorescent PCR. Acta Microbiologica Sinica, 2003, 43(5): 626-634. ( in Chinese)
[28]   孙炳剑, 雷小天, 袁虹霞, 邢小萍, 李洪连. 小麦纹枯病化学防治药剂的筛选. 麦类作物学报, 2007, 27(5): 914-918.
Sun B J, Lei X T, Yuan H X, Xing X P, Li H L. Screening of the fungicides for the chemical control of wheat sharp eyespot. Journal of Triticeae Crops, 2007, 27(5): 914-918. (in Chinese)
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[3] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[4] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[5] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[6] LI WenXue, XIAO RuiGang, LÜ MiaoMiao, DING Ning, SHI HuaRong, GU PeiWen. Establishment and Application of Real-Time PCR for Quantitatively Detecting Plasmopara viticola in Vitis vinifera [J]. Scientia Agricultura Sinica, 2019, 52(9): 1529-1540.
[7] BAI HuiYang, LU Geng, LU JunXing, GUAN Li, TANG Xin, ZHANG Tao. Cloning and Expression Analysis of Jasmonic Acid Carboxyl Methyltransferase Gene from Perilla frutescens [J]. Scientia Agricultura Sinica, 2019, 52(9): 1657-1666.
[8] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[9] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[10] BAI Hui, SONG ZhenJun, WANG YongFang, QUAN JianZhang, MA JiFang, LIU Lei, LI ZhiYong, DONG ZhiPing. Identification and Expression Analysis of MYB Transcription Factors Related to Rust Resistance in Foxtail Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4016-4026.
[11] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[12] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[13] XIE Jie,WANG Ming,DING HongYing,LI Qing,WANG WanXing,XIONG XingYao,QIN YuZhi. Expression and Structural Analysis of SC MI390-5p and Its Target Genes in Potato Response to Low Temperature [J]. Scientia Agricultura Sinica, 2019, 52(13): 2295-2308.
[14] ZHANG ShuangNa, LI ZhengNan, FAN XuDong, ZHANG ZunPing, REN Fang, HU GuoJun, DONG YaFeng. Establishment of RT-LAMP Assay for Detection of Apple chlorotic leaf spot virus (ACLSV) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1706-1716.
[15] SUN BingXue,SHI YanXia,ZHU FaDI,XIE XueWen,CHAI ALi,LI BaoJu. Establishment of AS-real-time PCR for Quantitatively Detecting the H278R Allele in the SdhB Associated with Corynespora cassiicola in Cucumber [J]. Scientia Agricultura Sinica, 2018, 51(24): 4647-4658.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!