Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (20): 4096-4108.doi: 10.3864/j.issn.0578-1752.2014.20.018

• ANIMAL SCIENCE·VETERINARY SCIENCERE • Previous Articles     Next Articles

Detection and Analysis of Resistance Genes in Quinolone-Resistant Escherichia coli Isolates from Different Livestocks in Xinjiang

NAN Hai-chen, DI Li-na, XIA Li-ning   

  1. College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052
  • Received:2014-01-23 Revised:2014-07-11 Online:2014-10-16 Published:2014-10-16

Abstract: 【Objective】The objective of this study is to investigate the prevalence and characteristics of plasmid mediated quinolone resistance (PMQR) determinents in quinolone-resistant E. coli from different animal origins in Xinjiang, and their coexistence with the major β-lactamases and 16s rRNA methylation enzyme genes. 【Method】 Polymerase chain reaction (PCR) was used to detect PMQR (qnrA, qnrB, qnrC, qnrD, qnrS, qepA, oqxA, oqxB, aac(6’)-Ib-cr), b-lactamase gene (blaTEM, blaCTX-M, blaSHV, blaKPC, blaCMY-2, blaLAP-1) and 16S rRNA (armA, rmtB) genes in 79 strains from pigs, 8 strains from cattle and 96 strains from sheep quinolone-resistant (ciprofloxacin, norfloxacin, enrofloxacin) E. coli. The positive strains were performed by using DNA sequencing to determine the purpose of the belt.Minimal inhibitory concentrations (MICs) of the related antibiotics to these isolates carrying the β-lactamase and 16S rRNA methylase genes,were tested and the relationship between the genotype and resistant phenotype was analyzed.【Result】The results showed that the qnrS (6.33%, 5/79), aac(6')-Ib-cr (5.06%, 4/79), oqxA (44.3%, 35/79), oqxB (50.6%, 40/79) were main PMQR determinants, blaTEM (100%, 79/79) was main β-lactamase genes and rmtB (3.80%, 3/79) was main16S rRNA methylase genes in E. coli from pigs; the qnrS (12.50%, 1/8), oqxA (12.5%, 1/8), oqxB (12.5%,1/8), aac(6')-Ib-cr (12.50%, 1/8) and qepA (12.50%, 1/8) were main PMQR determinants, the blaTEM (100%, 8/8) and blaSHV (12.50%, 1/8) were main β-lactamase genes in E. coli from cattle; the qnrS (6.25%, 6/96), oqxA (33.3%, 32/96) oqxB (38.5%, 37/96) and aac(6')-Ib-cr (22.91%, 22/96) were main PMQR determinants, the blaTEM (100%, 96/96) and blaCTX-M (2.08%, 2/96) were main β-lactamase genes and the rmtB (2.08%, 2/96) was main16S rRNA methylase genes in E. coli from sheep. The qnrA, qnrB, qnrC, qnrD, blaKPC, blaCMY-2 and blaLAP-1 genes were not detected in any of the isolates. The co-harboring of resistant genes was common among these E.coli from different animals, and the resistant phenotype of E.coli from different animal sources carrying β-lactam enzyme and 16S rRNA methylase genes has some correlation.【Conclusion】The PMQR determinants were existed in E. coli from different animals in Xinjiang, and they coexist with the main b-lactamase and/or 16s rRNA methylation enzyme genes. In addition, the PMQR determinants and β-lactamase genes were firstly detected in the E. coli from sheep.

Key words: quinolone-resistant E. coli, different animal origin, PMQR determinants, detection

[1]    刘书亮, 张晓利, 韩新锋, 王小兰. 动物性食品源大肠杆菌耐药性研究. 中国食品学报, 2011, 11(7):163-168.
Liu S L, Zhang X L, Han X F, Wang X L. Drug resistance of Escherichia Coli strains isolated from animal food. Journal of Chinese Institute of Food Science and Technology, 2011, 11(7): 163- 168.(in Chinese)
[2]    Pons M J, Mosquito S, Gomes C, Del Valle L J, Ochoa T J, Ruiz J. Analysis of quinolone-resistance in commensal and diarrheagenic Escherichia coli isolates from infants in Lima, Peru. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108(1): 22-28.
[3]    Chenia H Y, Pillay B, Pillay D. Analysis of the mechanisms of fluoroquinolone resistance in urinary tract pathogens. Journal of Antimicrobial Chemotherapy, 2006, 58(6): 1274-1278.
[4]    刘健华, 陈杖榴. 喹诺酮类抗菌药耐药新机制. 中国兽医杂志, 2007, 43(1): 54-56.
Liu J H, Chen Z L. New quinolone antibacterial drug resistance mechanisms. Chinese Journal of Veterinary Medicine, 2007, 43(1): 54-56.(in Chinese)
[5]    Veldman K, Cavaco L M, Mevius D, Battisti A, Franco A, Botteldoorn N, Bruneau M, Perrin-Guyomard A, Cerny T, Escobar C D, Guerra B, Schroeter A, Gutierrez M, Hopkins K, Myllyniemi A L, Sunde M, Wasyl D, Aarestrup F M, Veldman K. International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. Journal of Antimicrobial Chemotherapy, 2011, 66(6): 1278-1286.
[6]    Jones-Dias D, Manageiro V, Francisco A P, Martins A P, Domingues G, Louro D, Ferreira E, Caniça M. Assessing the molecular basis of transferable quinolone resistance in Escherichia coli and Salmonella spp. from food-producing animals and food products. Veterinary Microbiology, 2013, 167(3-4): 523-531.
[7]   Hassan W M, Hashim A, Domany R. Plasmid mediated quinolone resistance determinants qnr, aac(6')-Ib-cr, and qepA in ESBL- producing Escherichia coli clinical isolates from Egypt. Indian Journal of Medical Microbiology 2012, 30(4): 442-447.
[8]    夏利宁, 赵红琼, 苏艳, 郭庆勇, 婷婷, 高攀. 新疆某猪场分离的大肠杆菌对抗生素耐药性调查. 新疆农业科学, 2012, 49(12): 2299-2303.
Xia L N, Zhao H Q, Sun Y, Guo Q Y, Cheng T T, Gao P. Resistance Survey of Escherichia coli Isolates from a Pig Farm to Antibiotics in Xinjiang. Xinjiang Agricultural Sciences, 2012, 49(12): 2299-2303.(in Chinese)
[9]        夏利宁, 向发, 罗小鱼, 赵红琼,郭庆勇,南海辰,底丽娜. 新疆某羊场分离的大肠杆菌对抗生素耐药性调查. 新疆农业科学, 2014, 51(1): 150-156.
Xia L N, Xiang F, Luo X Y, Zhao H Q, Guo Q Y, Nan H C, Di L N. Survey of Resistance Escherichia coli Isolates to Antibiotics from a Sheep Farm in Xinjiang. Xinjiang Agricultural Sciences, 2014, 51(1): 150-156. (in Chinese)
[10]     夏利宁, 向发, 郭庆勇, 南海辰,底丽娜,姚刚. 新疆不同地区牛源大肠杆菌耐药性调查. 中国畜牧兽医, 2014, 41(2): 111-115.
Xia L N, Xiang F, Guo Q Y, Nan H C, Di L N, Yao G. A Resistant Survey of Escherichia coli Isolates from Cattle Farms in Different Regions of Xinjiang. China Animal Husbandry & Veterinary Menicine, 2014, 41(2): 111-115. (in Chinese)
[11]   Wu J J, Ko W C, Tsai S H, Yan J J. Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital. Antimicrobial Agents and Chemotherapy, 2007, 51(4): 1223-1227.
[12]   Wang M H, Guo Q L, Xu X G, Wang X Y, Ye X Y, Wu S, Hooper D C, Wang M G. New plasmid-mediated quinolone resistance gene, qnrC, found in aclinical isolate of Proteus mirabilis. Antimicrobial Agents and Chemotherapy, 2009, 53 (5): 1892-1897.
[13]   Cavaco L M, Hasman H, Xia S, Aarestrup F M. qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrobial Agents And Chemotherapy, 2009, 53(2): 603-608.
[14]   Xia L N, Li L, Wu C M, Liu Y Q, Tao X Q, Dai L, Qi Y H, Lu L M, Shen J Z. A survey of plasmid-mediated fluoroquinolone resistance genes from Escherichia coli isolates and their dissemination in Shandong, China. Foodborne Pathogens and Disease, 2010, 7(2): 207-215.
[15]   Rodríguez-Martínez J M, Díaz de Alba P, Briales A, Machuca J, Lossa M, Fernández-Cuenca F, Rodríguez Baño J, Martínez-Martínez L, Pascual Á. Contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrum-β-lactamase-producing Klebsiella pneumoniae. Journal of Antimicrobial Chemotherapy, 2013, 68(1): 68-73.
[16]   Park C H, Robicsek A, Jacoby G A, Sahm D, Hooper D C. Prevalence in the United States of aac(6’)-Ib-cr Encoding a Ciprofloxacin- Modifying Enzyme.Antimicrobial Agents And Chemotherapy, 2006, 50(11): 3953-3955.
[17]   Monstein H J , Ostholm-Balkhed A, Nilsson M V, Nilsson M, Dornbusch K, Nilsson L E. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. Acta Pathologica Microbiologica Immunologica Scandinavica, 2007, 115(12): 1400- 1408.
[18]   Xia L N, Tao X Q, Shen J Z, Dai L, Wang Y, Chen X, Wu C M. A survey of β-lactamase and 16S rRNA methylase genes among fluoroquinolone-resistant Escherichia coli isolates and their horizontal transmission in Shandong, China. Foodborne Pathog Disease, 2011, 8(12): 1241-1248.
[19]   Laurent Poirel, Vincent Cattoir, Ana Soares, Claude-James Soussy, Patrice Nordmann. Novel Ambler Class A β-lactamase LAP-1 and Its Association with the Plasmid- Mediated Quinolone Resistance Determinant QnrS1. Antimicrobial Agents and Chemotherapy, 2007, 51(2): 631-637.
[20]   Zhang R, Ichijo T, Huang Y L, Cai J C, Zhou H W, Yamaguchi N, Nasu M, Chen G X. High prevalence of qnr and aac(6')-Ib-cr genes in both water-borne environmental bacteria and clinical isolates of Citrobacter freundii in China. Microbes Environ, 2012, 27(2): 158-163.
[21]   Zhao J J , Chen Z L, Chen S, Deng Y T, Liu Y H, Tian W, Huang X H, Wu C M, Sun Y X, Sun Y, Zeng Z L, Liu J H. Prevalence Dissemination of oqxAB in Escherichia coli Isolates from Animals, Farmworkers, and the Environment. Antimicrobial Agents and Chemotherapy, 2010, 54(10): 4219-4224.
[22]   Yang T, Zeng Z L, Rao L L, Chen X J, He D D, Lv L C, Wang J, Zeng L, Feng M S, Liu J H. The association between occurrence of plasmid-mediated quinolone resistance and ciprofloxacin resistance in Escherichia coli isolates of different origins. Veterinary Microbiology, 170(1-2): 89-96.
[23]   Habeeb M A, Haque A, Iversen A, Giske C G. Occurrence of virulence genes, 16S rRNA methylases, and plasmid-mediated quinolone resistance genes in CTX-M-producing Escherichia coli from Pakistan.  European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33(3): 399-409.
[24]   Fortini D, Fashae K, García-Fernández A, Villa L, Carattoli A. Plasmid-mediated quinolone resistance and β-lactamases in Escherichia coli from healthy animals from Nigeria. Journal of Antimicrobial Chemotherapy, 2011, 66(6): 1269-1272.
[25]   郝宏珊, 杨保伟, 师俊玲, 席美丽, 王新, 崔玥, 孟江洪. 鸡肉源沙门氏菌对喹诺酮和氟喹诺酮类抗生素耐药状况及相关基因. 微生物学报, 2011, 51(10): 1413-1420.
Hao H S, Yang B W, Shi J L, Xi M L, Wang X, Cui Y, Meng J H. Drug resistance and related genes of chickenborne Salmonella to quinolone and fluoroquinolones. Acta Microbiologica Sinica, 2011, 51(10): 1413-1420. (in Chinese)
[26]   Huang S Y, Dai L, Xia L N, Du X D, Qi Y H, Liu H B, Wu C M, Shen J Z. Increased prevalence of plasmid-mediated quinolne resistance determinants in chicken Escherichia coli isolates from 2001 to 2007. Foodborne Pathog Disease, 2009, 6(10): 1203-1209.
[27]   张云飞. 大肠杆菌质粒介导的耐氟喳诺酮类药物6个基因PCR检测研究[D]. 雅安: 四川农业大学, 2010.
Zhang Y F. Study on PCR of detecting six Eseherichiacoli Plasmid-Mediated Quinolone Resistanee Genes and Its Moleeular EPidemiolog[D]. Yaan: Sichuan Agricultural University, 2010. (in Chinese)
[28]   王彬婷, 夏菁, 黄运芳, 任思琪, 李琳. 合肥地区动物源致病性大肠杆菌ESBLs和PMQR基因流行分布. 中国兽医学报, 2013, 33(4): 581-585.
Wang B T, Xia J, Huang Y F, Ren S Q, Li L. Prevalence of ESBLs and PMQR genes in pathogenic Escherichia coli isolated from animals in hefei district. Chinese Journal of Veterinary Science, 2013, 33(4): 581-585. (in Chinese)
[29]   Ajayi A O, Oluduro A O, Olowe O A, Odeyemi A T, Famurewa O. Plasmid-mediated fluoroquinolone-resistance QnrA and QnrB genes among Escherichia coli from cattle in Ado-Ekiti, Nigeria. West Indian Medical Journal, 2012, 61(8): 784-788.
[30]   Diwan V, Chandran S P, Tamhankar A J, Stålsby Lundborg C, Macaden R. Identification of extended-spectrum β-lactamase and quinolone resistance genes in Escherichia coli isolated from hospital wastewater from central India. Journal of Antimicrobial Chemotherapy, 2012, 67(4):857-859.
[31]   杨海飞. 临床分离黏质沙雷菌染色体及质粒介导的喹诺酮类耐药基因的检测及其与β-内酰胺酶和 16S rRNA 甲基化酶基因的相关性研究[D]. 合肥: 安徽医科大学, 2013.
Yang H F. Prevalence of chromosome-and plasmid - mediated quinolone Resistance in association with β-lactamases and 16S rRNA Methylase Genes amongst clinical isolates of Serratia marcescens[D]. Hefei: Anhui Medical University, 2013. (in Chinese)
[32]   刘艳艳. 临床分离志贺菌质粒介导喹诺酮类耐药基因的检测及其与 β-内酰胺酶、16S rRNA 甲基化酶和整合子基因的相关性研究[D]. 合肥: 安徽医科大学, 2012.
[1] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[2] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[3] CUI JiangKuan,REN HaoHao,CAO MengYuan,CHEN KunYuan,ZHOU Bo,JIANG ShiJun,TANG JiHua. SCAR-PCR Rapid Molecular Detection Technology of Heterodera zeae [J]. Scientia Agricultura Sinica, 2022, 55(17): 3334-3342.
[4] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[5] LI ZhenXi,LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing. Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification [J]. Scientia Agricultura Sinica, 2022, 55(1): 74-84.
[6] DUAN Yu,XU JianJian,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Detection of Citrus Leaf Blotch Virus by Reverse Transcription- Recombinase Polymerase Amplification (RT-RPA) [J]. Scientia Agricultura Sinica, 2021, 54(9): 1904-1912.
[7] Xue BAI,Teng HUI,ZhenYu WANG,YunGang CAO,DeQuan ZHANG. Determination of 5 Nitropolycyclic Aromatic Hydrocarbons in Roasted Meat Products by High Performance Liquid Chromatography- Fluorescence Detection [J]. Scientia Agricultura Sinica, 2021, 54(5): 1055-1062.
[8] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[9] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[10] MA ZhiMin,XU JianJian,DUAN Yu,WANG ChunQing,SU Yue,ZHANG Qi,BIN Yu,ZHOU ChangYong,SONG Zhen. Establishment of RT-RPA for Citrus Yellow Vein Clearing Virus (CYVCV) Detection [J]. Scientia Agricultura Sinica, 2021, 54(15): 3241-3249.
[11] CHEN PengFei,MA Xiao. Research Status and Trends of Automatic Detection of Crop Planting Rows [J]. Scientia Agricultura Sinica, 2021, 54(13): 2737-2745.
[12] HUI YuanYuan,PENG HaiShuai,WANG BiNi,ZHANG FuXin,LIU YuFang,JIA Rong,REN Rong. Research Progress of Food-Borne Pathogen Detection Based on Electrochemical and Optical Aptasensors [J]. Scientia Agricultura Sinica, 2021, 54(11): 2419-2433.
[13] ZHANG QingAn,CHEN BoYu. Research Progress of Four Sulfur Compounds Related to Red Wine Flavor [J]. Scientia Agricultura Sinica, 2020, 53(5): 1029-1045.
[14] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[15] GUAN FangNian,LONG Li,YAO FangJie,WANG YuQi,JIANG QianTao,KANG HouYang,JIANG YunFeng,LI Wei,DENG Mei,LI Hao,CHEN GuoYue. Evaluation of Resistance to Stripe Rust and Molecular Detection of Important Known Yr Gene(s) of 152 Chinese Wheat Landraces from the Huang-huai-hai [J]. Scientia Agricultura Sinica, 2020, 53(18): 3629-3637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!