Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (14): 2814-2829.doi: 10.3864/j.issn.0578-1752.2014.14.012

• HORTICULTURE • Previous Articles     Next Articles

Construction of a Genetic Linkage Map and QTL Analysis of Fruit-Associated Traits in Watermelon

 LIU  Chuan-Qi, GAO  Peng, LUAN  Fei-Shi   

  1. Horticulture College, Northeast Agricultural University, Harbin 150030
  • Received:2014-01-16 Online:2014-07-15 Published:2014-05-23

Abstract: 【Objective】The purpose of this study is to construct a molecular genetic map and map the QTL of the fruit-associated traits with CAPS and SSR markers in watermelon, which will provide a theoretical basis for traits improving, gene fine mapping and gene cloning.【Method】Fruits of female parent PI186490, male parent LSW-177 and F2 population derived from the cross between the two watermelon strains were picked in 40 days after pollination. Fruit shape index, center and edge brix, center and edge flesh firmness, rind hardness, seed length, seed width, seed thickness and 100-seed-weight were investigated correspondingly, then the obtained data were analyzed by SPSS19. Both parent materials genomes were resequenced by Illumina HiSeq 2000 platform for high-throughput sequencing, outputed 10G each data sample, covered more than 20× of watermelon genome. With the published genome as a reference, the obtained data were assembled with bwa, and explored for the SNP by Samtools. The sequence 1 000 bp around the SNP loci was extracted by self perl script and then inputed into SNP2CAPS to transform into CAPS markers. Twenty CAPS restriction sites were selected evenly on the 11 chromosomes. CAPS primers were designed 100-500bp around the mutation by Primer Premier 5 for PCR amplification and digestion detection. 1% agarose gel electrophoresis was used to detect the digestion products. SSR markers in this experiment were come from the published literature. The products of SSR-PCR were detected by polyacrylamid gel electrophoresis. All the molecular data were tested by chi-square. Markers which were confirmed the proportion 1﹕2﹕1 were chosen for the genetic linkage map. The genetic linkage map was constructed by Mapmaker/Exp version 3.0. The markers were grouped with the order ‘Group’. The number of the markers in the group which was less than 8 was sequenced faultlessly with the order ‘Compare’, which was more than 8 was ordered with the order ‘Try’. Map Chart 2.1 was used for drawing this genetic linkage map. QTL Network 2.0 was used for QTL analysis. 1 000 times repeats were done with the replacement testing, the critical threshold was P=0.005, and the method of constructing the map was composite interval mapping. The whole genome was scanned on every chromosome with 1 cM walking speed. QTL additive effect and epistatic effect were analyzed by the software.【Result】This genetic linkage map contained 16 linkage groups and included 87 CAPS markers and SSR markers. The map was 1 484.3 cM and the average distance between two makers was 15.46 cM. Mapping the QTL of the fruit-associated traits and analyzed by software QTL Network 2.0, and a total of 8 additive QTL and one pair of epistatic QTL were detected. Among the additive loci, 1 is for fruit shape index(QFSI 1), 1 for center brix (QCBR), 1 for center flesh firmness(QCFF), 1 for edge flesh firmness(QEFF), 1 for seed length(QSL), and 3 for seed width(QSWD 1, QSWD 2, QSWD 3). The epistatic loci, FSI 2 and FSI 3 are for fruit shape index. Phenotypic contribution rate of 10% or more have six QTL, which explained 11.7% -18.8% of the genetic variation. All of the QTL explained 7.12%-18.8% of the phenotypic variation.【Conclusion】A molecular genetic linkage map composed mainly of CAPS markers was constructed. Eight additive QTL and one pair of epistatic QTL, which control the fruit-associated traits of watermelon were located, thus providing a scientific basis for further fine positioning and cloning the genes controlling superior traits of fruit of watermelon.

Key words: watermelon , genetic linkage map , CAPS , QTL

[1]王琛, 张琳, 赵姜, 吴敬学. 中国西瓜市场形势分析与展望. 农业展望, 2013, 4.

Wang C, Zhang L, Zhao J, Wu J X. Analysis of China’s watermelon market and its future prospect. Agricultural Outlook, 2013, 4.(in Chinese)

[2]尚建立, 王吉明, 郭琳琳, 马双武. 西瓜种质资源主要植物学性状的遗传多样性及相关性分析. 植物遗传资源学报, 2012, 13(1): 11-15, 21.

Shang J L, Wang J M, Guo L L, Ma S W. Genetic diversity and correlation analysis of main botany characters in watermelon genetic resources. Journal of Plant Genetic Resources, 2012, 13(1): 11-15, 21.(in Chinese)

[3]张高原. 西(籽)瓜杂交种种子纯度鉴定及指纹图谱构建的研究[D]. 兰州: 甘肃农业大学,2013.

Zhang G Y. The research of seeds purity identification and fingerprint construction in watermelon hybrids [D]. Lanzhou: Gansu Agricultural University, 2013. (in Chinese)

[4]汤谧, 任俭, 杜念华, 别之龙, 孔秋生, 伊鸿平, 孙玉宏, 周谟兵. 分子标记技术在西瓜和甜瓜育种中的应用进展. 贵州农业科学, 2013, 41(4): 19-22.

Tang M, Ren J, Du N H, Bie Z L, Kong Q S, Yi H P, Sun Y H, Zhou M B. Research progress in molecular marker technology application in watermelon and melon breeding. Guizhou Agricultural Sciences, 2013, 41(4): 19-22. (in Chinese)

[5]Katherine S, Jason P, Adam H, Nelly K, Rebecca O, Xiang W W, Eleni B, David G C, Chris A T, Danelle K S, Victoria W, Eva C, Greg T, Cathy W, Dolores S, Elaine G, Steven K, Cecilia M G. Comparative mapping in watermelon[citrullus lanatus (Thunb.) matsum. et nakai]. Theoreticl Applied Genetics, 2012, 125(8): 1603-1618.

[6]Jason P, Katherine S, Hussein A H, Eleni B, Victoria W, Steven K, Cecilia M G. Main and epistatic quantitative trait loci associated with seed size in watermeon. Journal of the American Society for Horticultural Science, 2012, 137(6): 452-457.

[7]Ren Y, Cecilia M G, Zhang Y, Gong G Y, Zhang H Y, Guo S G, Sun H H, Cai W T, Zhang J, Xu Y. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (citrullus lanatus). BMC Plant Biology, 2014, doi: 10.1186/1471-2229-14-33.

[8]易克. 西瓜遗传图谱的构建及其重要农艺性状的基因定位[D]. 长沙: 湖南农业大学, 2002.

Yi K. Construction of genetic linkage map and localization of main agronomic characters in watermelon [Citrullus lanatus(Thunb.) Matsum&Nadai] [D]. Changsha: Hunan Agricultural University, 2002. (in Chinese)

[9]刘识, 王学征, 栾非时, 朱子成. 西瓜果实含糖量QTL分析. 果树学报, 2013, 30(1): 75-80.

Liu S, Wang X Z, Luan F S, Zhu Z C. QTL analysis for total sugar content in watermelon. Journal of Fruit Science, 2013, 30(1): 75-80. (in Chinese)

[10]Luan F S, Delannay I, Staub J E. Chinese melon(Cucumis melo L.) diversity analysis provide strategies for genetic improvement and evidentiary support of domestication patterns. Euphytica, 2008, 164(2): 445-461.

[11]Zhang H Y, Wang H, Guo S G, Ren Y, Gong G Y Weng Y Q, Xu Y. Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus (Thunb.) Matsum & Nakai. Euphytica, 2012, 186(2): 329-342.

[12]盛云燕, 栾非时, 陈克农. 甜瓜SSR标记遗传多样的性研究. 东北农业大学学报, 2006, 37(2): 165-170.

Sheng Y Y, Luan F S, Chen K N, Genetic diversity of melon cultivars based on SSR makers. Journal of Northeast Agricultural University, 2006, 37(2): 165-170. (in Chinese)

[13]张法惺, 栾非时, 盛云燕. 不同生态类型西瓜种质资源遗传多样性的SSR分析. 中国蔬菜, 2010(14): 36-43.

Zhang F X, Luan F S, Sheng Y Y, Analysis of genetic diversity on different ecological watermelon germplasm using SSR markers. China Vegetable, 2010(14): 36-43. (in Chinese)

[14]Guo S G, Zhang J G, Sun H H, Jerome S, William J L, Zhang H Y, Zheng Y, Mao L Y, Ren Y, Wang Z W, Min J M, Guo X S, Florent Murat, Byung K H, Zhang Z L, Gao S, Huang M Y, Xu Y M, Zhong S L, Aureliano B, Lucas A M, Zhao H, He H J, Zhang Y, Zhang Z H, Huang S W, Tan T, Erli P, Lin K, Hu Q, Kuang H H, Ni P X, Wang B, Liu J G, Kou Q H, Hou W J, Zou X H, Jiang J, Gong G Y, Kathrin K, Heiko S, Huang Y, Hu X S, Dong S S, Liang D Q, Wang J, Wu K, Xia Y, Zhao X, Zheng Z Q, Xing M, Liang X M, Huang B Q, Lv T, Wang J Y, Yin Y, Yi H P, Li R Q, Wu M Z, Amnon L, Zhang X P, James J G, Wang J, Li Y F, Fei Z J, Xu Y. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics, 2013, 45(1): 51-58.

[15]Yang J, Hu C C, Ye X Z, Zhu J. QTL Network 2.0. Institute of Bioinformatics. Hangzhou: Zhejiang University, 2005.

[16]朱军. 运用混合线性模型定位复杂数量性状基因的方法. 浙江大学学报: 工学版, 1999, 33(3): 327-335.

Zhu J. Mixed model approaches of mapping genes for complex quantitative traits. Journal of Zhejiang University: Engineer Science, 1999, 33(3): 327-335. (in Chinese)

[17]Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theoretical Applied Genetics, 2001, 103(1): 153-160.

[18]王春明, 安井秀, 吉村醇, 苏昌潮, 翟虎渠, 万建民. 水稻叶蝉抗性基因回交转育和CAPS标记辅助选择. 中国农业科学, 2003, 36(3): 237-241.

Wang C M, An J X, Ji C C, Su C C, Zhai H Q, Wan J M. Green rice leafhopper resistance gene transferring through backcrossing and CAPS marker assisted selection. Scientia Agricultura Sinica, 2003, 36(3): 237-241. (in Chinese)

[19]于拴仓, 王永健, 郑晓鹰. 大白菜叶球相关性状的QTL定位与分析. 中国农业科学, 2004, 37(1): 106-111.

Yu S C, Wang Y J, Zheng X Y. Mapping and analysis QTL controlling agronomic traits related to head in brassica campestris L. ssp. Pekinensis. Scientia Agricultura Sinica, 2004, 37(1): 106-111. (in Chinese)

[20]卢刚, 曹家树, 陈杭, 向珣. 白菜几个重要园艺性状的QTLs分析. 中国农业科学, 2002, 35(8): 969-974.

Lu G, Cao J S, Chen K, Xiang X. QTLs mapping of some horticultural traits of Chinese cabbage. Scientia Agricultura Sinica, 2002, 35(8): 969-974. (in Chinese)

[21]赵璞, 刘瑞响, 李诚璞, 邢向茹, 曹晓良, 陶勇生, 张祖新. 基于掖478导入系的玉米产量性状QTL鉴定. 中国农业科学, 2011, 44(17): 3508-3519.

Zhao P, Liu R X, Li C P, Xing X R, Cao X L, Tao Y S, Zhang Z X. QTL Mapping for grain yield associated traits using ye 478 introgression lines in maize. Scientia Agricultura Sinica, 2011, 44(17): 3508-3519. (in Chinese)

[22]陈美霞, 祁建民, 方平平, 李爱青, 危成林, 陶爱芬, 徐建堂, 谢增容, 林培清, 兰涛, 吴建梅, 陈富成. 红麻6个重要产量性状的QTL定位. 中国农业科学, 2011, 44(5): 874-883.

Chen M X, Qi J M, Fang P P, Li A Q, Wei C L, Tao A F, Xu J T, Xie Z R, Lin P Q, Lan T, Wu J M, Chen F C. QTL Mapping of six yield traits in kenaf. Scientia Agricultura Sinica, 2011, 44(5): 874-883. (in Chinese)

[23]黄中文, 赵团结, 喻德跃, 陈受宜, 盖钧镒. 大豆产量有关性状QTL的检测. 中国农业科学, 2009, 42(12): 4155-4165.

Huang Z W, Zhao T J, Yu D Y, Chen S Y, Gai J Y. Detection of QTLs of yield related traits in soybean. Scientia Agricultura Sinica, 2009, 42(12): 4155-4165. (in Chinese)

[24]Song K, Slocum M K, Osborn T C. Molecular marker analysis of genes encoding morphological variation in Brassica rapa (syn. campestris). Theoretical Applied Genetics, 1995, 90(1): 1-10.

[25]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Science Society of America, 1999, 39(6): 1642-1651.

[26]Specht J E, Chase K, Macrander M, Graef B L, Chung J, Markwell J  P, Germann M, Orf J H, Lark K G. Soybean response to water:a QTL analysis of drought tolerance. Crop Science, 2001, 41(2): 493-509.

[27]张雪娇, 高鹏, 栾非时. 甜瓜果实相关性状QTL分析. 中国蔬菜, 2013(18): 35-41.

Zhang X J, Gao P, Luan F S. QTL Analysis of Fruits Related Traits in Melon (Cucumis melo L.). China Vegetable, 2013(18): 35-41. (in Chinese)

[28]桑云, 赵亮, 张坤普, 田纪春, 叶宝兴. 小麦DH群体穗下节间直径、茎壁厚及茎面积的QTL定位. 作物学报, 2010, 36(1): 61-67.

Sang Y, Zhao L, Zhang K P, Tian J C, Ye B X. Mapping QTLs for Uppermost internode diameter and thickness and area of culm wall with doubled-haploid population in wheat. Acta Agronomica Sinica, 2010, 36(1): 61-67. (in Chinese)

[29]Cao G Q, Zhu J, He C X, Gao Y M, Wu P. QTL analysis for epistatic and QTL×environment interactions on final height of rice (Oryza sativa L.). Acta Genetica Sinica, 2001, 28(2): 135-143.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[4] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[7] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[8] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[9] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[10] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[11] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[12] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[13] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[14] CHEN Ge,CAO LiDong,XU ChunLi,ZHAO PengYue,CAO Chong,LI FengMin,HUANG QiLiang. Performance Study of Prothioconazole Microcapsules Prepared by Solvent Evaporation Method [J]. Scientia Agricultura Sinica, 2021, 54(4): 754-767.
[15] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!