Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (22): 4784-4790.doi: 10.3864/j.issn.0578-1752.2013.22.016

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Characterization and Expression Analysis of Goat Ovarian chi-miR-100f-5p

 NA  Ri-Su-12, LIU  Guang-1, XIANG  Yang-1, ZHAO  Hai-Lin-1, WU  Ting-1, ZHAO  Jin-Hong-2, LI  Fan-1, HUANG  Xuan-Yang-1, SUN  Xiao-Wei-1, ZHENG  Jiao-1, ZHANG  Jia-Hua-1   

  1. 1.College of Animal Science and Technology, Southwest University/Chongqing Key Laboratory of Forage and Herbivore/Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing 400715
    2.Chongqing Academy of Animal Husbandry, Chongqing 400716
  • Received:2013-01-25 Online:2013-11-15 Published:2013-04-23

Abstract: 【Objective】 The relationship between the goat ovarian expressed miR-100 with its predicted target genes and goat ovarian function or follicular development was studied in order to provide data for goat breeding mechanism.【Method】 Goat ovarian expressed miR-100 was obtained by cloning and sequencing a small RNA library with pooled RNA from goat ovarian tissue. The expression profiling was detected by RT-qPCR. miR-100 target genes and functional classification were predicted by bioinformatics method.【Result】The chi-miR-100f-5p, at a length of 21 nt , was isolated from goat ovaries. The sequence is highly homologous with dan-miR-100, and has one loci in the genome negative (-) chain, which located in goats sequence CM000899.1: 33997894 to 33997914; The chi-miR-100f-5p was detected in goat ovarian, pituitary, heart and other tissues, showing chi-miR- 100f-5p was not an ovarian-specific miRNA. It was found that chi-miR-100f-5p expressed at higher level in heart and pituitary, secondly in ovary, and the expression of chi-miR-100f-5p in the liver, spleen, lung, and kidney was significantly lower than in ovary (P<0.01). It was alsofound that chi-miR-100f-5p expressed at significantly higher level in single lambing Inner Mongolia cashmere goat ovary than the high fecundity Dazu black goat ovary (P<0.01); The chi-miR-100f-5p was mainly targeted for integrin β1 subunit and pituitary-specific transcription factor 1 gene, and might be involved in the integrin signaling pathway, promoting the growth and differentiation of pituitary endocrine cells, and regulating the hypothalamic-pituitary-gonadal axis hormonessecretion.【Conclusion】The newly discovered chi-miR-100f-5p in goat ovarian may be an important candidate miRNA in regulation of breeding.

Key words: chi-miR-100f-5p , microRNA , ovary

[1]Carletti M Z, Christenson L K. MicroRNA in the ovary and female reproductive tract. Journal of Animal Science, 2009, 87(Suppl.4): E29-E38.

[2]Christenson L K. MicroRNA control of ovarian function. Animal Reproduction, 2010, 7(3): 129-133.

[3]O’Hara S P, Mott J L, Splinter P L. MicroRNAs: key modulators of posttranscriptional gene expression. Gastroenterology, 2009, 136: 17-25.

[4]Ramesh S P. MicroRNA function: multiple mechanisms for a tiny RNA. RNA, 2005, 11(12): 1753-1761.

[5]Bartel D P, Chen C Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nature Reviews Genetics, 2004, 5 (5): 396-400.

[6]Kim H J, Cui X S, Kim E J, Kin W J, Kim N H. New porcine microRNA genes found by homology search. Genome, 2006, 49(10): 1283-1286.

[7]Ro S, Song R, Park C, Zheng H, Sanders K M, Yan W. Cloning and expression profiling of small RNAs expressed in the mouse ovary. RNA, 2007, 13(12): 2366-2380.

[8]Hossain M M, Ghanem N, Hoelker M, Rings F, Phatsara C, Tholen E, Schellander K, Tesfaye D. Identification and characterization of miRNAs expressed in the bovine ovary. BMC Genomics, 2009, 10: 443.

[9]Otsuka M, Zheng M, Hayashi M, Lee J D, Yoshino O, Lin S C, Han J H. Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. The Journal of Clinical Investgation, 2008, 118(5): 1944-1954.

[10]Lei L, Jin S, Gonzale G, Behringer R R, Woodruff T K. The regulatory role of Dicer in folliculogenesis in mice. Molecular and Cellular Endocrinology, 2009, 315(1/2): 63-73.

[11]Carletti M Z, Fiedler S D, Christenson L K. MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biology of Reproduction, 2010, 83(2): 286-295.

[12]Yao N, Yang B Q, Liu Y, Tan X Y, Lu C L, Yuan X H, Ma X. Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Endocrine, 2010, 38(2): 158-166.

[13]Fiedler S D, Carletti M Z, Hong X M, Christenson L K. Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells. Biology of Reproduction, 2008, 79(6): 1030-1037.

[14]Yao G D, Yin M M, Lian J, Tian H, Liu L, Li X, Sun F. MicroRNA-224 is involved in transforming growth factor-beta- mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad 4. Molecular Endocrinology, 2010, 24(3): 540-551.

[15]Nagaraja A K, Creighton C J, Yu Z F, Zhu H F, Gunaratne P H, Reid J G, Olokpa E, Itamochi H, Ueno N T, Hawkins S M, Anderson M L, Matzuk M M. A link between mir-100 and FRAP1/mTOR in clear cell ovarian cancer. Molecular Endocrinology, 2010, 24(2): 447-463.

[16]Gebeshuber C A, Martinez J. MiR-100 suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling. Oncogene, 2012, 10: 1038.

[17]Peng D X, Luo M, Qiu L W, He Y L, Wang X F. Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncology Reports, 2012, 27(4): 1238-1244.

[18]Sebastian G D, Felix P H, Sheena K. MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cells. Circulation, 2011, 123(9): 999-1009.

[19]Carolina T, Gaetana P, Luca C, Giuseppina M, Lucio P, Silvia P, Tommaso R. MiRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells. The FASEB Journal Research Communication, 2009, 24(9): 3255-3263.

[20]Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G. MiRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Development, 2002, 16(6): 720-728.

[21]Yang H, Kong W, He L, Zhao J J, O’Donnell J D, Wang J, Wenham R M, Coppola D, Kruk P A, Nicosia S V, Cheng J Q. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Research, 2008, 68(2): 425- 433.

[22]Nam E J, Yoon H, Kim S W, Kim H, Kim Y T, Kim J H, Kim J W, Kim S. MicroRNA expression profiles in serous ovarian carcinoma. Clinical Cancer Research, 2008, 14: 2690 -2695.

[23]Sucharov C, Bristow M R, Port J D. MiRNA expression in the failing human heart: functional correlates. Journal of Molecular and Cellular Cardiology, 2008, 45(2): 185-192.

[24]Henson B J, Bhattacharjee S, O’Dee D M, Feingold E, Gollin S M. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer, 2009, 48(7): 569-582.

[25]陈翠, 张立敏, 陈晓杰, 刘喜冬. 垂体特异性转录因子1基因遗传多态性与中国西门塔尔牛生长及育肥性状的遗传效应分析. 中国畜牧兽医, 2012, 39(4): 122-125.

Chen C, Zhang L M, Chen X J, Liu X D. Analysis the effects of the polymorphism of pituitary specific transcription factor 1 gene on growth and fattening characters of Chinese Simmental. China Animal Husbandry and Veterinary Medicine, 2012, 39(4): 122-125. (in Chinese)

[26]韩毅冰, 蔡志明, 孙青原, 陈系古. 整合蛋白β1 在人类卵母细胞和早期胚胎上分布的研究. 解剖学报, 2002, 33(4): 400-403.

Han Y B, Cai Z M, Sun Q Y, Chen X G. Study of the distribution of integrin β1 on human oocytes and early embryos. Chinese Journal of Anatomy, 2002, 33(4): 400-403. (in Chinese)
[1] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[2] LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061.
[3] ZHANG Jing,ZHANG JiYue,YUE YongQi,ZHAO Dan,FAN YiLing,MA Yan,XIONG Yan,XIONG XianRong,ZI XiangDong,LI Jian,YANG LiXue. LKB1 Regulates Steroids Synthesis Related Genes Expression in Bovine Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(10): 2057-2066.
[4] FENG RuiRong,FU ZhongMin,DU Yu,ZHANG WenDe,FAN XiaoXue,WANG HaiPeng,WAN JieQi,ZHOU ZiYu,KANG YuXin,CHEN DaFu,GUO Rui,SHI PeiYing. Identification and Analysis of MicroRNAs in the Larval Gut of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(1): 208-218.
[5] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FENG RuiRong,ZHANG WenDe,YU KeJun,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,FU ZhongMin,XU GuoJun,GUO Rui. MicroRNA-Mediated Cross-Kingdom Regulation of Apis mellifera ligustica Worker to Nosema ceranae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1805-1820.
[6] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[7] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
[8] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[9] LI WenYang,LIU Yuan,WU XianFeng,GAO ChengFang,HUANG QinLou. Transcriptome Analysis of Differentially Gene Expression Associated with Ovary Tissue During the Follicular Stage in Fuqing Goat and Nubian Black Goat [J]. Scientia Agricultura Sinica, 2019, 52(12): 2171-2182.
[10] GUO Rui,DU Yu,TONG XinYu,XIONG CuiLing,ZHENG YanZhen,XU GuoJun,WANG HaiPeng,GENG SiHai,ZHOU DingDing,GUO YiLong,WU SuZhen,CHEN DaFu. Differentially Expressed MicroRNAs and Their Regulation Networks in Apis mellifera ligustica Larval Gut During the Early Stage of Ascosphaera apis Infection [J]. Scientia Agricultura Sinica, 2019, 52(1): 166-180.
[11] ZHAO Jing, TAO Rong, HAO DeJun, XIAO LiuBin, TAN YongAn. RNA Interference of Vitellogenin Receptor Gene in Beet Armyworm (Spodoptera exigua) [J]. Scientia Agricultura Sinica, 2019, 52(1): 56-64.
[12] Rui GUO,Yu DU,CuiLing XIONG,YanZhen ZHENG,ZhongMin FU,GuoJun XU,HaiPeng WANG,HuaZhi CHEN,SiHai GENG,DingDing ZHOU,CaiYun SHI,HongXia ZHAO,DaFu CHEN. Differentially Expressed MicroRNA and Their Regulation Networks During the Developmental Process of Apis mellifera ligustica Larval Gut [J]. Scientia Agricultura Sinica, 2018, 51(21): 4197-4209.
[13] LI HuaWei, LIU ZhongHua, ZHANG Hong, XU YongQing, LI GuoLiang, LIN ZhaoMiao, QIU YongXiang, LUO WenBin, JI RongChang, TANG Hao, QIU SiXin. Mining and Characterization of MicroRNAs Associated with Pathogenicity by Different Sweet Potato Viruses [J]. Scientia Agricultura Sinica, 2018, 51(11): 2094-2105.
[14] SHI Xian, XIONG XianRong, LAN DaoLiang, CHEN WeiMing, HU JiaJia, CAI WenYi, LI Jian. Cloning and Expression Analysis of CCND2 Gene in Yak Ovaries During Different Periods of Estrus [J]. Scientia Agricultura Sinica, 2017, 50(13): 2604-2613.
[15] ZHU Zhi-ming, CHEN Hong-ping, LIN Ru-long, MIAO Zhong-wei, XIN Qing-wu, LI Li, ZHANG Dan-qing, ZHENG Nen-zhu. Transcriptome Analysis of Ovary Tissue in Early Laying Period and Egg Laying Peak Period of Shanma Ducks [J]. Scientia Agricultura Sinica, 2016, 49(5): 998-1007.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!