Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (20): 4378-4387.doi: 10.3864/j.issn.0578-1752.2013.20.022

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Effect of Heat Stress on the Intestinal Flora Structure and Alkaline Phosphatase Activities and mRNA Expression of Amino Acid Transporters of Layer

 LI  Yong-Zhu-1, CHEN  Chang-Xiu-1, Yongquan Cui2   

  1. 1.College of Life Science, Linyi University, Linyi 276005, Shandong, China
    2.Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
  • Received:2013-03-25 Online:2013-10-15 Published:2013-07-11

Abstract: 【Objective】 The objective of this study is to reveal the influence mechanisms of heat stress affecting the intestinal flora structure of layer, the alkaline phosphatase activities of intestinal mucosa and the mRNA expression of amino acid transporters.【Method】A total of 96 Jining Bairi chicken aged at 16 weeks were chosen and randomly divided into control group (group I, (24±1)℃) and heat stress group ((38±1)℃). six replicates were desighed for each group with 8 individuals for each replicate, and the duration sustained for 14 days. PCR-DGGE and RT-PCR of 16S rDNA were used. The bacterial diversity of the contents in dodecadactylon, jejunum and ileum, alkaline phosphatase activities of intestinal mucosa and the mRNA expression of amino acid transporters e.g. rBAT, y+LAT1, and CATl were analyzed when the layers were under the heat stress on 2nd day (group II), 7th day (group III) and 14th day(group IV), respectively.【Result】The bacterial diversities of each intestinal segments showed relatively abundant from the 7th day after heat stress. On the 7th and 14th days, no sensitive lactobacillus in jejunum and ileum was detected, and so were the L. johnsonii, nonculturable bacteria and Bacteroides in ileum. While the nonculturable bacteria, ulcer Bacteroides, ulcer Bacteroides, and Shigella sonnei were detected at every phase of heat stress. The alkaline phosphatase activities of mucosal epithelial cells in jejunum and ileum decreased significantly compared to the control group (P<0.05). The mRNA expressions of rBAT, y+LAT1 of the group III in jejunum and ileum were the lowest. The variation extent of the mRNA expression in jejunum at each phase of heat stress was the greatest (P<0.05). The mRNA expressions of CAT1 in ileum of groups III and IV were affected more greatly by the heat stress compared to that of group I (P<0.01).【Conclusion】The influence on the intestinal flora in jejunum and ileum by heat stress is more evidently and the intestinal function of digestion and absorption can be changed by the variation of the intestinal flora..

Key words: heat stress , laying hens , intestinal flora , alkaline phosphatase activity , amino acid transporters

[1]Burkholder K M, Thompson K L, Einstein M E, ApplegateT J, Patterson J A. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella Enteritidis Colonization in Broilers. Poultry Science, 2008, 87: 1734-1741.

[2]Liu F, Yin J, Du M, Yan P, Xu J, Zhu X, Yu J. Heat-stress-induced damage to porcine small intestinal epithelium associated with downregulation of epithelial growth factor signaling. Journal of Animal science, 2009, 87:1941-1949.

[3]Quinteiro-Filho W M, Ribeiro A, Ferraz-de-Paula V, Pinheiro M L, Sakai M, Sa L R M, Ferreira A J P, Palermo-Neto J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poultry Science, 2010, 89:1905-1914.

[4]Tengjaroenkul B, Smith B J, Caceci T, Smith S A. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture, 2000, 182: 317-327.

[5]Yoshikatsu Kanai, Hiroko Segawa, Arthit Chairoungdua, Ju Young Kim, Do Kyung Kim, Hirotaka Matsuo, Seok Ho Cha and Hitoshi Endou. Amino acid transporters: molecular structure and physiological roles. Nephrology Dialysis Transplantation, 2000, 15 (Suppl. 6):9-10.

[6]Verrey F, Closs E I, Wagner C A, Palacin M, Endou H, Kanai Y. CATs and HATs: the SLC7 famiy of amino acid transporters. Pflügers Archiv European Journal of Physiology, 2004,447:532-542.

[7]Broer S, Wagner C A. Structutr-function relationships of Heterodimeric Amino acid transporters. Cell Biochemistryand Biophysics, 2002, 36:155-168.

[8]熊霞, 阳成波, 印遇龙. 肠道氨基酸及氨基酸转运载体研究进展. 生理科学进展, 2012,43(3):202-205.

Xiong X, Yang C B,Yin Y L. Intestinal amino acids and amino acid transport carrier is reviewed. Progress in Physiological Sciences, 2012, 43(3): 202-205. (in Chinese)

[9]Hansen J, Gulatia A, Sartor R B. Therole of mucosal immunity and host genetics in defining intestinal commensal bacteria. Current Opinion in Gastroenterology, 2010, 26(6): 564-571.

[10]Suliaman R H O, Huwaida E E. Malik, Ibrahim, A. Yousif. Effect of dietary protein level and strain on growth performance of heat stressed broiler chicks. International Journal of Poultry Science, 2012, 11(10): 649-653.

[11]Matsuka A, Sakai M, Kanazawa S. Application of T-RFLP analysis for Bacterial community structure of colonies grown on agar plates. Journal-Faculty of Agriculture Kyushu University, 2003, 48:107-112.

[12]Sakai J S, Kleckner N, Yang X, Guhathakurta A. Tn10 transpososome assembly involves a folded intermediate that must be unfolded for target capture and strand transfer. The EMBO Journal, 2000, 19(4): 776-785.

[13]Taverniers I, van Bockstaele E, De Loose M. Cloned plasmid DNA fragments as calibrators for controlling GMOs, different real-time duplex quantitative PCR methods. Analytical and Bioanalytical Chemistry, 2004, 378 (5): 1198-1207.

[14]Zhu X Y, Zhong T, Pandya Y, Joerger R D. 16s rRNA-based analysis of microbiota from the cecum of broiler chickens. Applied and Environmental Microbiology, 2002, 68(1): 124-137.

[15]Torok V A, Ophel-Keller K, Loo M, Hughes R J. Application of Methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Applied and Environmental Microbiology, 2008, 74(3): 783-791.

[16]Kretzschmar-McCluskey V, Curtis P A, Anderson K E, Kerth L K, Berry W D. Influence of hen age and molting treatments on shell egg exterior, interior, and contents microflora and Salmonellaprevalence during a second production cycle. Poultry Science, 2008, 87: 2146-2151.

[17]尹业师, 王欣. 影响实验小鼠肠道菌群的多因素比较研究. 实验动物科学, 2012, 29(4): 12-18.

Yin Y S, Wang X. Comparative study for factors that affect microbiota colonization in experimental mice. Laboratory Animal Science, 2012, 29(4):12-18. (in Chinese)

[18]Ur Rehman H,  Vahjen W,  Awad W A,  Zentek P J. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Archives of Animal Nutrition, 2007, 61(5): 319-335.

[19]Hume M E, Kubena L F, Edrington T S, Donskey C J, Moore R W, Ricke S C, Nisbet D J. Poultry digestive microflora biodiversity as indicated by denaturing gradient gel electrophoresis. Poultry Science, 2003, 82: 1100-1107.

[20]Kogut M H, Klasing K. An immunologist's perspective on nutrition, immunity, and infectious diseases: Introduction and overview. Journal Applied Poultry Research, 2009, 18: 103-110.

[21]Gong J H, Si W D, Forster R J, Huang R L, Yu H, Yin Y L, Yang C B, Han Y M. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiology Ecology, 2007, 59(1): 147-157.

[22]Bonnet S, Geraert P A, Lessire M, Carre B, Guillaumin S. Effect of high ambient temperature on feed digestibility in broilers. Poultry Science, 1997, 96:857-863.

[23]冯焱, 杨小军, 胡雄兵, 刘烨, 尹瑞卿, 覃定奎, 姚军虎. 免疫应激对肉鸡肠道微生物区系的影响. 农业生物技术学报, 2012, 20(7): 807-814.

Feng Y, Yang X J, Hu X B, Liu Y, Yin R Q, Qin D K, Yao J H. Effects of different immune status on the variation of intestinal microflora community in broiler chickens(Gallus gallus). Journal of Agricultural Biotechnology,2012, 20(7): 807-814. (in Chinese)

[24]李永洙, Cui Y Q. 利用PCR-DGGE方法分析不同鸡群的盲肠微生物菌群结构变化. 生态学报, 2011, 31(21):6513-6521.

Li Y Z, Cui Y Q. Structural change analysis of cecal bacterial flora in different poultry breeds using PCR-DGGE. Acta Ecologica Sinica, 2011, 31(21):6513-6521. (in Chinese)

[25]Mountzouris K C, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K. Evaluation of the efficacy of a probiotic containing Lactobacilllus, Bifidobacterium, Enterococcus, and pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poultry Science, 2007, 86(2): 309-317. 

[26]Ross R P, Morgan S, Hill C. Preservation and fermentation: past, present and future. International Journal of Food Microbiology, 2002, 79: 3-16.

[27]雷蕾, 张日俊. 鸡肠道正常菌群的研究进展. 中国微生态学杂志, 2008, 20(3):298-303.

Lie L, Zhang R J. The research progress of chicken intestinal normal flora. Chinese Journal of Microecology, 2008, 20(3): 298-303. (in Chinese)

[28]Malo M S, Alam S N, Mostafa G, Zeller S J, Johnson P V, Mohammad N, Chen K T, Moss A K, Ramasamy S, Faruqui A, Hodin S, Malo P S, Ebrahimi F, Biswas B, Narisawa S, Milla´n J L, Warren H S, Kaplan J B, Kitts C L, Hohmann E L, Hodin R A. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. GUT, 2010, 59:1476-1484.

[29]Geddes K, Philpott D J. A new role for intestinal alkaline phosphatase in gut barrier maintenance. Gastroenterology, 2008.135(1):8-12.

[30]Jr Shifrin D A, McConnell R E, Nambiar R, Higginbotham J N, Coffey R J, Tyska M J. Enterocyte microvillus-derived vesicles detoxify bacterial products and regulate epithelial-microbial interactions. Current Biology, 2012, 22 (7):627-631.

[31]刘春燕, 吴中红, 王新谟, 安永义, 江逆, 李震钟, 王清吉. 京白蛋白耐热力评定指标的研究.畜牧兽医学报, 1998, 29(4): 315-321.

Liu C Y, Wu Z H, Wang X M, An Y Y, Jang N, Li Z Z, Wang Q J. Study on indexs of thermotolerance in growers. Acta Veterinaria et Zootechnica Sinica, 1998, 29(4):315-321. (in Chinese)

[32]Deves R, Boyd C A R. Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiological Reviews, 1998, 78:487-539.

[33]Stein W D. Channels, Carriers, and Pumps: an Introduction to Membrane Transport. San Diego, CA: Academic Press, 1990.

[34]谭会泽, 王修启, 苏海林, 邹仕庚, 代发文, 冯定远. 鸡不同肠段碱性氨基酸转运载体mRNA表达的差异性研究.畜牧兽医学报, 2007, 38(3): 247-252.

Tan H Z, Wang X Q, Su H L, Zou S G, Dai F W, Feng D Y. Difference of cationic amino acid transporters mRNA n expression in different intestinal segments of chicken. Acta Veterinaria et Zootechnica Sinica,2007, 38(3):247-252. (in Chinese)
[1] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[2] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[3] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[4] LIU RuiYao,HUANG GuoHong,LI HaiYan,LIANG MinMin,LU MingHui. Screening and Functional Analysis in Heat-Tolerance of the Upstream Transcription Factors of Pepper CaHsfA2 [J]. Scientia Agricultura Sinica, 2022, 55(16): 3200-3209.
[5] Min LIU,Yulin FANG. Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines [J]. Scientia Agricultura Sinica, 2020, 53(7): 1444-1458.
[6] ZHANG AiJing,LI LinQiong,WANG PengJie,GAO YuLong. Effects of Heat Stress on Cell Membrane and Membrane Protein of Escherichia coli [J]. Scientia Agricultura Sinica, 2020, 53(5): 1046-1057.
[7] YUAN XiongKun,JIANG LiLi,TAO ShiYu,ZANG JianJun,WANG JunJun. Research Progresses on Sensitive Index System of Heat Stress in Sows [J]. Scientia Agricultura Sinica, 2020, 53(22): 4691-4699.
[8] HU LiRong, KANG Ling, WANG ShuHui, LI Wei, YAN XinYi, LUO HanPeng, DONG GangHui, WANG XinYu, WANG YaChun, XU Qing. Effects of Cold and Heat Stress on Milk Production Traits and Blood Biochemical Parameters of Holstein Cows in Beijing Area [J]. Scientia Agricultura Sinica, 2018, 51(19): 3791-3799.
[9] HAN JiaLiang, LIU JianXin, LIU HongYun. Effect of Heat Stress on Lactation Performance in Dairy Cows [J]. Scientia Agricultura Sinica, 2018, 51(16): 3162-3170.
[10] LI YongZhu,JIN TaiHua, HAN ZhaoQing, XIA ChunFeng, CHAO HongYu, ZHANG NaiFeng, WANG ShiQin, DIAO QiYu. Effects of the Milk Replacer on the Development of Intestine, the Flora Diversity and the Relative Expression of Glucose Transporter Gene of Early Weaned Yimeng Black Goat Lambs [J]. Scientia Agricultura Sinica, 2018, 51(11): 2193-2205.
[11] FAN XiaoRui, ZHANG Zhen, XI HuaMing, LIANG YaJun, HE JunPing. Effect of Heat Stress on the Expression of Cyt-C and Caspase-3 in Boar Testis [J]. Scientia Agricultura Sinica, 2017, 50(5): 924-931.
[12] YANG Huan, SHEN Xin, LU DaLei, LU WeiPing. Effects of Heat Stress Durations at Grain Formation Stage on Grain Yield and Starch Quality of Waxy Maize [J]. Scientia Agricultura Sinica, 2017, 50(11): 2071-2082.
[13] LI Lin, AI Yang, XIE Zheng-lu, CAO Yang, ZHANG Yuan-shu. Lactating Dairy Cows Under Heat Stress Enhanced Gluconeogenesis by Activating the GHIGF-I Axis [J]. Scientia Agricultura Sinica, 2016, 49(15): 3046-3053.
[14] LI Gan-jin, XU Xian-hao, ZHANG Hai-liang, ZHU Min, CUI Xu-hong. Effects of Short-Term Exposure to High Temperature on the Survival and Fecundity of the Brown Planthopper (Nilaparvata lugens) [J]. Scientia Agricultura Sinica, 2015, 48(9): 1747-1755.
[15] LI Xiu, GONG Biao, XU Kun. Effect of Exogenous Spermidine on Levels of Endogenous Hormones and Chloroplast Ultrastructure of Ginger Leaves Under Heat Stress [J]. Scientia Agricultura Sinica, 2015, 48(1): 120-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!