Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (20): 4370-4377.doi: 10.3864/j.issn.0578-1752.2013.20.021

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Development of a RT-PCR Method for Differentiation of the Wild-Type PEDVs and the Attenuated PEDVs

 WU  Yu-Lu-1, CHENG  Qun-1, YU  Ling-Xue-1, HOU  Yi-Xuan-2, WANG  Kang-1, LIU  Guang-Qing-1, TONG  Guang-Zhi-1, ZHOU  Yan-Jun-1   

  1. 1.Division of Swine Infectious Diseases, Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai 200241
    2.School of Agricultural and Biology, Shanghai Jiao Tong University, Shanghai 200240
  • Received:2013-04-12 Online:2013-10-15 Published:2013-08-08

Abstract: 【Objective】The objective of this study is to establish an effective tool for differentiating diagnosis of the PEDVs in epidemiological investigations by the method of RT-PCR. 【Method】According to the truncation in the ORF3 gene of PEDV reference strains in GenBank, the wild-type PEDV isolates and attenuated isolates, two pairs of primers were designed. The clinical samples from different farms occurred with diarrhea epidemic were tested, and their ORF3 gene was analyzed. Some representative samples were selected and amplified by the primers ORF3-JD1/2. The procedure of the RT-PCR was perfected. A large number of clinical samples were collected to carry out the specificity and sensitivity test.【Result】The sequences of ORF3 gene of 11 PEDV isolates were obtained. No deletion in ORF3 gene of 9 strains was found, and it indicated that they were wild-type PEDVs. And the results showed 95.8%-97.1% nucleotide sequence homology identity between wild isolates and attenuated ones. The RT-PCR was shown to specifically amplify a 300 bp fragment from the wild-type PEDVs or a 250 bp fragment from the attenuated PEDVs. This method showed no cross-amplification between PEDVs and other porcine virus. And the sensitivity of detection of viral was upto 100 TCID50. The clinical samples were tested by using this RT-PCR method , and the results showed a 65.4% PEDV positive rate.【Conclusion】 The RT-PCR could be used as an effective tool for differentiating diagnosis of the PEDVs in epidemiological investigations.

Key words: PEDV , ORF3 gene , RT-PCR , differential diagnosis

[1]Pensaert M B, dE Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Archives of Virology, 1978, 58: 243-247.

[2]D C Turgeon, M Morin, J Jolette, R Higgins, G Marsolais, E DiFranco. Coronavirus-like particles associated with diarrhea in baby pigs in Quebec. Canadian Veterinary Journal, 1980, 21(3): 100-108.

[3]Trén Horváth, E. Mocsári. Ultrastructural changes in the small intestinal epithelium of suckling pigs affected with a transmissible gastoenteritis(TGE)-like disease. Archives of Virology, 1981, 68: 103-113.

[4]Takahashi K, Okada K, Oshima K. An outbreak of swine diarrhea of a new type associated with coronavirus-like particles in Japan. Japan Journal of Veterinary Sciences, 1983, 45(6): 829-832.

[5]Kweon C H, Kwon B J, Jung T S. Isolation of porcine epidemic diarrhea virus (PEDV) in Korea. Korean Journal Veterinary Research, 1993, 33: 249-254.

[6]程庆华, 牛小迎, 叶成玉. 青海地区猪流行性腹泻病调查. 青海畜牧兽医杂志, 1992, 22(3): 22-23. 

Cheng Q H, Niu X Y, Ye C Y. Investigation on epidemic diarrhea in pigs in Qinghai region. Chinese Qinghai Journal of Animal and Veterinary Sciences, 1992, 22(3): 22-23.(in Chinese)

[7]吴玉璐, 周艳君, 童光志, 虞凌雪, 程群, 王康, 于海, 刘光清. 猪流行性腹泻病毒M基因的表达及鉴定. 中国动物传染病学报, 2012, 20(6): 6-10.

Wu Y L, Zhou Y J, Tong G Z, Yu L X, Cheng Q, Wang K, Yu H, Liu G Q. Expression and Identification of porcine epidemic diarrhea virus M gene. Chinese Journal of Animal Infectious Diseases, 2012, 20(6): 6-10.(in Chinese)

[8]Li Z L, Zhu L, Ma J Y, Zhou Q F, Song Y H, Sun B L, Chen R A, Xie Q M, Bee Y Z. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field strains in south China. Virus Genes, 2012, 45(1):181-185.

[9]Park S J, Kim H K, Song D S, Moon H J, Park B K. Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field isolates in Korea. Archives of Virology, 2011, 156:577-585.

[10]Song D S, Yang J S, Oh J S, Han J H, Park B K. Differentiation of a Vero cell adapted porcine epidemic diarrhea virus from Korean field strains by restriction fragment length polymorphism analysis of ORF3. Vaccine, 2003, 21: 1833-1842.

[11]Jin S O, Song D S, Yang J S, Song J Y, Moon H J, Kim T Y, Park B K. Comparison of an enzyme-linked immunosorbent assay with serum neutralization test for serodiagnosis of porcine epidemic diarrhea virus infection. Journal of Veterinary Sciences, 2005, 6(4), 349-352.

[12]Guscetti F, Bernasconi C, Tobler K, Kristien V, Andreas P, Mathias A. Immunohistochemical detection of porcine epidemic diarrhea virus compared to other methods. Clinical and Diagnostic Laboratory Immunology, 1998, 5:412-414.

[13]Lee H M, Lee B J, Tae J H, Kweon C H, Lee Y S, Park J H. Detection of porcine epidemic diarrhea virus by immunohistochemistry with recombinant antibody produced in phages. Journal of Veterinary Medical Science, 2000, 62:333-337.

[14]Kweon C H, Lee J G, Han M G, Kang Y B. Rapid diagnosis of porcine epidemic diarrhea virus infection by polymerase chain reaction. Journal of Veterinary Medical Science, 1997, 59:231-232.

[15]Kwonil J, Chanhee C. RT-PCR-based dot blot hybridization for the detection and differentiation between porcine epidemic diarrhea virus and transmissible gastroenteritis virus in fecal samples using a non-radioactive digoxigenin cDNA probe. Journal of Virological Methods, 2005, 123:141-146.

[16]Lu W, Zheng B, Xu K, Wolfgang S, Du L Y, Charlotte K L, Chen J, Duan S, Deubel V, Sun B. Severe acute respiratory syndrome- associated coronavirus 3a protein forms an ion channel and modulates virus release. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103:12540-12545.

[17]McGoldrick A, Lowings J P, Paton D J. Characterisation of a recent virulent transmissible gastroenteritis virus from Britain with a deleted ORF3a. Archives of Virology, 1999, 144(4): 763 - 770.

[18]Wang K, Lu W, Chen J, Xie S, Shi H, Hsu H, Yu W, Xu K, Bian C, Fischer W B, Schwarz W, Feng L, Sun B . PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Letters, 2012, 586(4): 384-391.

[19]Puranaveja S, Kesdaengsakonwu P, Kitikoon P, Choojai R, Kedkovid K, Teankum R, Thanawongnuwech. Chinese-like strain of porcine epidemic diarrhea virus, Thailand. Emerging Infectious Diseases, 2009, 15(7): 1112-1115.

[20]Do T D, Nguyen T T, Puranaveja, S, Thanawongnuwech R. Genetic characterization of porcine epidemic diarrhea virus (PEDV) isolates from southern vietnam during 2009-2010 outbreaks. Thai Veterinary Medicine, 2011, 41(1): 55-64.

[21]Kim S Y, Song D S, Park B K. Differential detection of transmissible gastroenteritis virus and porcine epidemic diarrhea virus by duplex RT-PCR. Journal of Veterinary Diagnostic, 2001, 13: 516-520.

[22]Knuchel M, Ackermann M, Muller H K, Kihm U. An ELISA for detection of antibodies against porcine epidemic diarrhoea virus (PEDV) based on the speci?c solubility of the viral surface glycoprotein. Veterinary Microbiology, 1992, 32:117–322.

[23]Carvajal A, Lanza I, Diego R, Rubio P, Carmens P. Evaluation of a blocking ELISA using monoclonal antibodies for the detection of porcine epidemic diarrhea virus and its antibodies. Journal of Veterinary Diagnostic Investigation, 1995, 7: 60-64.

[24]张素芳, 贾 赟, 王敏秀, 倪艳秀, 何孔旺, 陈溥言. 猪流行性腹泻病毒嵌套式RT-PCR 检测方法的建立. 中国病毒学, 2004, 19(2): 174-176.

Zhang S F, Jia Y, Wang M X, Ni Y X He K W, Chen P Y. Establishment of nested RT-PCR diagnostic method for porcine epidemic diarrhea virus. Virologica Sinica, 2004, 19(2): 174-176. (in Chinese)

[25]吴学敏, 陈如敬, 王隆柏, 车勇良, 刘玉涛, 庄向生, 严山, 周伦江. 猪流行性腹泻病毒RT-PCR检测方法建立及初步应用研究. 中国农学通报, 2012, 28(26): 59-62.

Wu X M, Chen R J, Wang L B, Che Y L, Liu Y T, Zhuang X S, Yan S, Zhou L J. Development and preliminary application of a RT-PCR for detection of porcine epidemic diarrhea virus. Chinese Agricultural Science Bulletin, 2012, 28(26):59-62.(in Chinese)
[1] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[2] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[3] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[4] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[5] XU JianJian,WANG YanJiao,DUAN Yu,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Construction of Genome-Length cDNA of Citrus Vein Enation Virus and Identification of Its Infectivity [J]. Scientia Agricultura Sinica, 2020, 53(18): 3707-3715.
[6] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[7] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[8] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[9] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[10] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[11] WAN DongLi,HOU XiangYang,DING Yong,REN WeiBo,WANG Kai,LI XiLiang,WAN YongQing. Response and the Expression of Pi-Responsive Genes in Leymus chinensis Under Inorganic Phosphate Treatment [J]. Scientia Agricultura Sinica, 2019, 52(23): 4215-4227.
[12] YUAN JunHu,DING YiJuan,YANG WenJing,YAN BaoQin,CHAI YaRu,MEI JiaQin,QIAN Wei. Identification of Genes Encoding Secretory Proteins Related to the Pathogenicity of Sclerotinia sclerotiorum Using TRV-HIGS [J]. Scientia Agricultura Sinica, 2019, 52(23): 4274-4284.
[13] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[14] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[15] TANG YaFei,PEI Fan,LI ZhengGang,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Identification of Viruses Infecting Peppers in Guangdong by Small RNA Deep Sequencing [J]. Scientia Agricultura Sinica, 2019, 52(13): 2256-2267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!