Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (14): 3065-3071.doi: 10.3864/j.issn.0578-1752.2013.14.023

• RESEARCH NOTES • Previous Articles     Next Articles

Regulatory Effects of Exogenous Nitric Oxide on Physiological Growth of Cotton Seedlings Under Nitrogen Stress

 CHEN  Jing, LIU  Lian-Tao, SUN  Hong-Chun, ZHANG  Yong-Jiang, WANG  Zhan-Biao, LI  Cun-Dong   

  1. College of Agronomy, Agricultural University of Hebei /Hebei Key Laboratory of Crop Growth Regulation, Baoding 071001, Hebei
  • Received:2012-11-01 Online:2013-07-15 Published:2012-12-12

Abstract: 【Objective】In order to provide a theoretical basis for regulation of SNP in cotton, the effects of NO donor sodium nitroprusside(SNP) on physiological growth of cotton seedlings were investigated under nitrogen stress. 【Method】 Two control groups were carried out in hydroponic experiment. The first control group cotton seedlings (CK1) were grown with Hoagland's solution. The second control group cotton seedlings (CK2) were grown with Hoagland's solution without nitrogen. Five treatment groups were designed under different SNP concentrations using as the basis. The concentrations of SNP, were 50, 100, 200, 500 and 1 000 μmol•L-1, respectively. The growth and leaves physiological characteristics of cotton seedlings under nitrogen stress were measured.【Result】Nitrogen stress inhibited the growth of cotton seedlings. Nitrogen stress changed the photosynthetic system and material content. Low concentration exogenous nitric oxide could increase cotton seedlings growth, increase the content of chlorophyll, proline and soluble protein significantly. The effect of nitrogen stress was relieved by lower concentration of NO (SNP: 100 μmol•L-1). The effect of nitrogen stress was enhanced by high concentration of NO. 【Conclusion】 Lower concentration of NO (SNP: 50-100 μmol•L-1) has a best effect on mitigating cotton seedlings’ nitrogen stress and can increase the tolerance of cotton nitrogen stress.

Key words: cotton , nitrogen stress , nitric oxide , physiological growth

[1]张绪成, 上官周平, 高世铭. NO对植物生长发育的调控机制. 西北植物学报, 2005, 25(4): 812-818.

Zhang X C, Shangguan Z P, Gao S M. Regulation mechanism of nitric oxide to plant growth and development. Acta Botanica Boreali- Occidentalia Sinica, 2005, 25(4): 812-818. (in Chinese)

[2]陈银萍, 王晓梅, 杨宗娟, 于飞, 思显佩. NO对低温胁迫下玉米种子萌发及幼苗生理特性的影响. 农业环境科学学报, 2012, 31(2): 270-277.

Chen Y P, Wang X M, Yang Z J, Yu F, Si X P. Effects of nitric oxide on seed germination and physiological reaction of maize seedlings under low temperature stress. Journal of Agro-Environment Science, 2012, 31(2): 270-277. (in Chinese)

[3]Ya’Acov Y, Leshem, Esther H. The characterisation and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pinum Sativum Linn Foliage. Plant Physiology, 1996, 148: 258-263.

[4]Carlos G M, Lorenzo L. Nitric oxide induced stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology, 2001, 126: 1196-1204.

[5]Delledonne M, Xia Y J, Dixon R A, Chris L. Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585-588.

[6]Natalia C A, Aragunde M G, Lamattina L. Nitric oxide plays a central role in determining lateral root development in tomato. Planta, 2004, 218: 900-905.

[7]孙曦. 植物营养原理. 北京: 中国农业出版社, 1997.

Sun X. Theory of Plant Nutrition. Beijing: China Agriculture Press, 1997. (in Chinese)

[8]Bondada B R, Osterhuis D M, Norman R J, Baker W H. Canopy photosynthesis growth yield and boll accumulation under nitrogen stress in cotton. Crop Science, 1996, 36: 127-133.

[9]张旺锋, 勾玲, 王振林, 李少昆, 余松烈, 曹连莆. 氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响. 中国农业科学, 2003,  36(8): 893-898.

Zhang W F, Gou L, Wang Z L, Li S K, Yu S L, Cao L P. Effect of nitrogen on chlorophyll fluorescence of leaves of high-yielding cotton in Xinjiang. Scientia Agricultura Sinica, 2003, 36(8): 893-898. (in Chinese)

[10]马引利, 闫桂琴, 李瑾, 张媛华. 干旱胁迫条件下外源NO对翅果油树幼苗生理生化特征的影响. 西北林学院学报, 2011, 26(3): 30-35.

Ma Y L, Yan G Q , Li J, Zhang Y H. Effects of exogenous nitric oxide on the physiological and biochemical characteristics in elaeagnusmollis seedlings under water stress. Journal o f Northwest Forestry University, 2011, 26(3): 30-35. (in Chinese)

[11]魏海蓉, 孟艳玲, 孙阳, 刘庆忠, 束怀瑞. 高温胁迫下外源NO对高灌蓝莓PSⅡ光化学活性和抗氧化系统的影响. 应用生态学报, 2010, 21(10): 2529 -2535.

Wei H R, Meng Y L, Sun Y, Liu Q Z, Shu H R. Effects of exogenous nitric oxide on highbush blueberry PSⅡphotochemical activity and antioxidant system under high temperature stress. Chinese Journal of Applied Ecology, 2010, 21(10): 2529-2535. (in Chinese)

[12]高安妮, 田长平, 胡艳丽, 陈强, 毛志泉. 外源NO对连作条件下平邑甜茶幼苗生理特性的影响. 中国农业科学, 2011, 44(10): 2184-2192.

Gao A N, Tian C P, Hu Y L, Chen Q, Mao Z Q. Effects of exogenous nitric oxide on physiological characteristics of seedlings of Malus hupehensis Rehd. under continuous cropping. Scientia Agricultura Sinica, 2011, 44(10): 2184-2192. (in Chinese)

[13]崔兴国, 时丽冉. NO供体SNP对黄芪种子萌发和幼苗生长的影响. 河北农业科学, 2011, 15(2): 107-108.

Cui X G, Shi L R. Effects of exogenous nitric oxide donor SNP on seed germination and seedling growth of astragalus membranaceus. Journal of Hebei Agricultural Sciences, 2011, 15(2): 107-108. (in Chinese)

[14]刘洪展, 王立宁, 郑风荣. 外源一氧化氮对海水胁迫下玉米幼苗根系渗透调节效应的影响. 华北农学报, 2010, 25(5): 145-149.

Liu H Z, Wang L N, Zheng F R. Impacts of exogenous nitric oxide on the effects of osmotic adjustment of roots of maize seedlings during seawater stresses. Acta Agriculturae Boreali-Sinica, 2010, 25(5): 145-149. (in Chinese)

[15]曹慧, 王孝威, 邹岩梅. 外源NO对干旱胁迫下平邑甜茶幼苗叶绿素荧光参数和光合速率的影响. 园艺学报, 2011, 38(4): 613-620.

Cao H, Wang X W, Zou Y M. Effects of exogenous nitric oxide on chlorophyll fluorescence parameters and photosynthesis rate in Malus hupehensis seedlings under water stress. Acta Horticulturae Sinica, 2011, 38(4): 613-620. (in Chinese)

[16]胡凡波, 刘玲, 隆小华, 刘兆普. 外源NO对NaCl胁迫下长春花幼苗生物量和叶绿素荧光的影响. 生态学杂志, 2011, 30(8): 1620-1626.

Hu F B, Liu L, Long X H, Liu Z P. Effects of exogenous nitric oxide on biomass and chlorophyll fluorescence of Catharanthus roseus seedlings under NaCl stress. Chinese Journal of Ecology, 2011, 30(8): 1620-1626. (in Chinese)

[17]邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000: 172-175.

Zou Q. Handbook of Plant Physiological Experiment. Beijing: China Agricultural Press, 2000: 172-175. (in Chinese)

[18]Read S M, Northcote D H. Minimization of variation in the response to different protein of the Coomassie Blue G dye dinding: assay for protein. Analytical Biochemistry, 1981, 116: 53-641.

[19]吕淑霞. 基础生物化学实验指导. 北京: 中国农业出版社, 2003.

Lv S X. Basic Biological Chemistry Experiment Guidance. Beijing: China Agriculture Press, 2003. (in Chinese)

[20]张其德, 张建华, 刘合芹, 李建民. 限水灌溉和不同施肥方式对冬小麦旗叶某些光合功能的影响. 植物营养与肥料学报, 2000, 6(10): 24-29.

Zhang Q D, Zhang J H, Liu H Q, Li J M. Effects of limited irrigation and different fertilization ways on some photosynthetic functions of flag leaves in winter wheat. Plant Nutrition and Fertilizer Science, 2000, 6(10): 24-29. (in Chinese)

[21]Kishor P B K, Hong Z, Miao G H. Overexpression of Δ1- pyrroline-5-carboxylate synthetase increase proline production and confersosmo tolerance in transgenic plants. Plant Physiology, 1995, 108: 1387-1394.

[22]Shimazaki K, Sakaki T, Kondo N. Active oxygen participation in chlorophyll destruction and lipid peroxidation in SO2 fumigation leaves of spinach. Plant Cell Physiology, 1980, 21: 1193-1204.

[23]于秀针, 刘慧英, 张彩虹. 外源 NO 对低温胁迫下番茄幼苗生理特性及叶绿素荧光参数的影响. 石河子大学学报:自然科学版, 2010, 28(2): 172-176.

Yu X Z, Liu H Y, Zhang C H. Effects of exogenous nitric oxide on physiological characteristics and chlorophyll fluorescence parameters in tomato seedlings under low temperature stress. Journal of Shihezi University:Natural Science, 2010, 28(2): 172-176. (in Chinese)

[24]Wink D A, Mitchell J B. Chemical biology of nitric oxide: insights into regulatory, ctytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biology and Medicine, 1998, 25( 4- 5): 434- 456.

[25]李翠芳, 刘连涛, 孙红春, 张永江, 朱秀金, 李存东. 外源 NO 对 NaCl 胁迫下棉苗主要形态和相关生理性状的影响. 中国农业科学, 2012, 45(9): 1864-1872.

Li C F, Liu L T, Sun H C, Zhang Y J, Zhu X J, Li C D. Effects of exogenous nitric oxide on main growth and physiological characteristics of seedlings of cotton under NaCl stress. Scientia Agricultura Sinica, 2012, 45(9): 1864-1872. (in Chinese)

[26]Yamasaki H, Sakihama Y, Takahashi S. An alternative pathway for nitric oxide production in plant: new feather of an old enzyme. Trends in Plant Science, 1999, 4: 128-129.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[7] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[8] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[9] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[10] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[11] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[12] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[13] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[14] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
[15] WEN Ming, LI MingHua, JIANG JiaLe, MA XueHua, LI RongWang, ZHAO WenQing, CUI Jing, LIU Yang, MA FuYu. Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(16): 3473-3487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!