Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (14): 2953-2962.doi: 10.3864/j.issn.0578-1752.2013.14.011

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Expression Analysis of A Male Sterility-Related Gene VvMS2 from Grapes

 ZHENG  Huan-1, ZHANG  Ji-Yu-12, WANG  Xin-Wei-1, ZHANG  Zhen-1, JI  Chen-Fei-1, TAO  Jian-Min-1   

  1. 1.College of Horticulture, Nanjing Agricultural University, Nanjing 210095
    2.Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, Nanjing 210014
  • Received:2012-11-01 Online:2013-07-15 Published:2013-05-13

Abstract: 【Objective】 This paper aims to isolate the VvMS2 gene from the Vitis vinifera L. cv. Wink and Zhongshanhong, in order to further study the molecular mechanism of grape male sterility and grape molecular breeding. 【Method】 Specific primers were designed based on the grape sequence (CBI29968) in NCBI which is highest homology with Arabidopsis male sterility gene MS2, and the cDNA and genomic DNA of VvMS2 were cloned by PCR. VvMS2 gene structure characteristics were analyzed using the bioinformatics software. Quantitative real-time PCR (qRT-PCR) was performed to determine the expression pattern of VvMS2 in different tissues of ‘Wink’ and at different development stages in bud between ‘Zhongshanhong’ and ‘Wink’.【Result】The full length ORF cDNA sequence of VvMS2 with 1 755 bp were cloned. Bioinformatics analysis showed that this gene encodes 584 amino acids, containing NAD-binding-4 structure domains and sterile structure domains. This gene contains 9 exons and 8 introns. The protein molecular weight is 64.74 kD, isoelectric point is 8.84. Compared with other sequences of MS2 in GenBank, the deduced amino acid sequences of VvMS2 shared 40%-71% in homology. VvMS2 only specially expressed in floral buds and at the stages of tetrad to dinucleate. The expression level in button at uninucleate stage in ‘Wink’ is remarkably higher than that in ‘Zhongshanhong’.【Conclusion】The abnormal gene expression is related with male sterility in ‘Zhongshanhong’.

Key words: grape , male sterility , VvMS2 , gene cloning , characterization , expression pattern

[1]Kamalay J C, Goldberg R B. Regulation of structural gene expression in tobacco. Cell, 1980, 19: 935-946

[2]Sanders P M, Anhthu Q B, Weterings K, Mclntire K N, Hsu Y, Troung P Y, Beals T P, Goldberg R B. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod, 1999, 11:297- 322.

[3]Wilson Z A, Morroll S M, Dawson J, Swarup R, Tighe P J. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis with homology to the PHD finger family of transcription factors.  Plant Journal , 2001, 28(1): 27- 39.

[4]郑焕, 任俊鹏, 贾玥, 章镇, 陶建敏. 葡萄雌能花新种质(‘2004-6- 12’)花蕾发育过程中植物内源激素的变化. 果树学报, 2012, 29(3): 350-354.

Zheng H, Ren J P, Jia Y, Zhang Z, Tao J M. Changes of phytohormone contents in anther abortion of male sterile new grapevine selection‘2004-6-12’. Journal of Fruit Science, 2012, 29(3): 350-354. (in Chinese)

[5]刘乐承, 张弢, 曹家树. 植物花粉发育的分子生物学研究进展. 长江大学学报: 自然科学版, 2006, 3 (3): 174-178.

Liu L C, Zhang T, Cao J S. Advances in research on molecular biology of plant pollen development. Journal of Yangtze University: Natural Science Edition, 2006, 3 (3): 174-178. (in Chinese)

[6]斯钦巴特尔, 张辉, 哈斯阿古拉, 贾霄云, 高凤云. 亚麻中雄性不育基因同源序列MS2-F的克隆和表达分析. 植物生理学通讯, 2008(5): 897-902.

Siqin B, Zhang H, Hashi A, Jia X Y, Gao F Y. Cloning and expression analysis of male sterility gene homology sequence MS2-F in flax. Plant Physiology Communications, 2008(5): 897-902. (in Chinese)

[7]王华新, 王永勤, 曹家树, 向珣, 余小林, 叶纨芝. 白菜雄性不育相关新基因BcMF1的分离及特征分析.中国农业科学, 2008, 41(4): 1119-1127.

Wang H X, Wang Y Q, Cao J S, Xiang X, Yu X L, Ye W Z. Cloning and characterization of a new male sterility-related gene BcMF1 in Brassica campestris L. ssp. chinensis Makino. Scientia Agricultura Sinica, 2008, 41(4): 1119-1127. (in Chinese)

[8]韩莹琰. 白菜花粉发育相关的C2H2型锌指蛋白新基因BcMF20的克隆与功能验证[D]. 杭州: 浙江大学,2011.

Han Y Y. Cloning and functional confirmation of a novel pollen-specific gene BcMF20 encoding C2H2 zinc finger protein in Brassica campestris L.[D] Hangzhou: Zhejiang University, 2011. (in Chinese)

[9]Wang D X, Oses-Prieto J A, Kathy H L, John F F, Alma L. Burlingameand V W. The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis-regulation of metabolic functions. The Plant Journal, 2010, 63(3): 939-951.

[10]Bione N C P, Pagliarini M S, deAlmeida L A, Seifert A L. An ms2 male-sterile, female-fertile soybean sharing phenotypic expression with other ms mutants. Plant Breeding , 2002, 121(4): 307-313.

[11]刘秉华, 邓景扬, 小麦显性雄性不育单基因的染色体组定位. 遗传, 1984, 6(6): 10-12.

Liu B H, Deng J Y. Chromosome group location of a single dominant male sterility gene in wheat. Hereditas, 1984, 6(6): 10-12. (in Chinese)

[12]李祥义, 邓景扬. 太谷核不育小麦雄性败育过程的细胞形态学研究. 作物学报, 1983, 9(3): 151-156.

Li X Y, Deng J Y. Research on the cell morphology at various stages in the abortion of Taigu male sterile wheat. Acta Agronomica Sinica, 1983, 9(3): 151-156.  (in Chinese)

[13]周时佳, 韩敬花. 太谷核不育小麦可育株、不育株及 T 型不育系小麦同工的比较研究. 作物学报, 1985, 11(2): 109-114.

Zhou S J, Han J H. Studies on the comparison of isozyme in the fertile and sterile plants of the Taigu male sterile wheat, and timopheevi cytoplasmic male sterile line. Acta Agronomica Sinica, 1985, 11(2): 109-114. (in Chinese)

[14]Aarts M G M, Dirkse W G, Stiekema W J, Pereira A. Transposon tagging of a male sterility gene in Arabidopsis. Nature, 1993, 363(24):715-717.

[15]Aarts M G M, Hodge R, Kalantidis K, Florack D, Wilson Z A, Mulligan B J, Stiekema W J, Scott R, Pereira A. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductase in elongation/condensation complexes. Plant Journal, 1997, 12(3): 615-623.

[16]Hodge R, Paul W, Draper J. Cold- plaque screening: a simple technique for the isolation of low abundance, differentially expressed transcripts from convent ion al cDNA libraries. Plant Journal, 1997, 2: 257-260.

[17]李德谋,罗小英,杨广伟. 甘蓝型油菜隐性核不育两用S45AB中与MS2BnaP基因同源片段的克隆及序列分析. 作物学报,2002, 28(1): 1-5.

Li D M, Luo X Y, Yang G W. Cloning and sequence analysis of fragment homologous to MS2Bnap gene in rapeseed recessive genic male sterile line S45AB (Brassica napus L.). Acta Agronomica Sinica, 2002, 28(1): 1-5.(in Chinese)

[18]贺华良. 甘蓝型油菜细胞核雄性不育的基因表达研究[D]. 武汉: 华中农业大学, 2003.

He H L. Research of Gene Expression on the Genic Male Sterility in Brassica napus[D.] Wuhan: Huazhong Agricultural University, 2003. (in Chinese)

[19]陈玉峰. 甘蓝型油菜隐性细胞核雄性不育恢复基因的精细定位 [D]. 武汉: 华中农业大学,2007.

Chen Y F. Fine Mapping of the Recessive Genic Male-sterile Restorer in Brassica napus [D]. Wuhan: Huazhong Agricultural University, 2007. (in Chinese)

[20]Hu S W, Fan Y F, Zhao H X, Guo X L, Yu C Y, Sun G L, Dong C H, Liu S Y, Wang H Z. Analysis of MS2Bnap genomic DNA homologous to MS2 gene from Arabidopsis thaliana in two dominant digenic male sterile accessions of oilseed rape Bassica napus L. Theoretical Applied and Genetics, 2006, 113: 397-406.

[21]Chen W W, Yu X H, Zhang K S, Shi J X, Oliveira S D, Schreiber L, John S, Zhang D B. Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiology, 2011, 157: 842-853.

[22]陶建敏. 葡萄无核育种技术研究及种质创新[D]. 南京: 南京农业大学, 2007.

Tao J M. Study on the Technology in Breeding of Edless Grape and Innovation of Germplasm[D]. Nanjing: Nanjing Agricultural University, 2007. (in Chinese)

[23]刘倩, 周蓓蓓, 张其林, 章镇, 陶建敏. 葡萄雄性不育种质特性及其花粉败育的细胞学研究. 果树学报, 2010, 27(4) : 514-520.

Liu Q, Zhou B B, Zhang Q L, Zhang Z, Tao J M . Cytological study of male sterility and pollen abortion in two types of grapes. Journal of Fruit Science, 2010, 27(4): 514-520.(in Chinese)

[24]张计育, 渠慎春, 董畅, 高志红, 乔玉山, 章镇. 水杨酸诱导湖北海棠全长cDNA文库的构建及应用. 西北植物学报, 2010, 30(8): 1527-1533.

Zhang J Y, Qu S C, Dong C, Gao Z H, Qiao Y S, Zhang Z. Utility and construction of full-length cDNA library of Malus hupehensis post-introduced with salicylic acid.  Acta Botanica Boreali- Occidentalia Sinica, 2010, 30 (8): 1527-153.(in Chinese)

[25]佟兆国, 王富荣, 章镇, 赵剑波, 张开春, 闫国华, 周宇, 姜立杰. 一种从果树成熟叶片提取 DNA 的方法.果树学报,2008, 25(4): 122-125.

Tong Z G, Wang F R, Zhang Z, Zhao J B, Zhang K C, Yan G H, Zhou Y, Jiang L J. A method for DNA extraction from mature leaves of fruit trees. Journal of Fruit Science, 2008, 25(4): 122-125. (in Chinese)

[26]Geourjon C, Deléage G. SOPMA: Significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments, Computer Applications in the Biosciences, 1995, 11(6): 681-684.

[27]Arnold K, Bordoli L, Kopp J,  Schwede T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 2006(22): 195-201.

[28]Livak K J, Schmittgen T D. Analysis of relative gene expression date using real-time quantitive PCR and the 2-DDCt method. Methods, 2001, 25(4): 402-408.  

[29]Brooks J, Shaw G. Sporopollenin: A review of its chemistry, palaeochemistry and geochemistry. Grana, 1978, 17(3): 91-97.

[30]Ahlers F, Lambert J, Wiermann R. Acetylation and silylation of piperidine soluhilized sporopollenin from pollen of Typha angustifolia L. Z Naturforsch [C]. 2003, 58(11/12):  807-811.

[31]Blackmore S, Wortley A H, Skvarla J J, Rowley J R. Pollen wall development in flowering plants. The New Phytologist, 2007, 174(3): 483-498.

[32]Wang A, Xia Q, Xie W S, Dumonceaux T, Zou J, Datla R, Selvaraj G. Male gametophyte development in bread wheat (Triticum aestivum L.): molecular, cellular, and biochemical analyses of a sporophytic contribution to pollen wall ontogeny. Plant Journal, 2002, 30(6):  613-623.

[33]Metz J G, Pollard M R, Anderson L, Hayes T R, Lassner M W. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. Plant Physiology, 2000, 122(3): 635-644.

 [34]Doan T T P, Carlsson A S, Hamberg M,  Leif Bülow, Stymne S, Olsson P. Functional expression of five Arabidopsis fatty acyl-CoA reductase genes in Escherichia coli. Journal Plant Physiology, 2009, 166(8): 787-796.

[35]刘倩, 陶建敏, 张其林, 谢周. 葡萄雄性不育新种质2004-6-12(魏可实生)花蕾发育的生化分析. 江西农业学报, 2010, 22(1):54-56.

Liu Q, Tao J M, Zhang Q L, Xie Z. Biochemical analysis of male sterile newly-bred 2004-6-12(Wink Seedling) during flower development. Acta Agriculturae Jiangxi, 2010, 22(1):54-56. (in Chinese)
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[3] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[4] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[5] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[6] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[7] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[8] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[9] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[10] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[11] ZHANG YunXiu,JIANG Xu,WEI ChunXue,JIANG XueQian,LU DongYu,LONG RuiCai,YANG QingChuan,WANG Zhen,KANG JunMei. The Functional Analysis of High Mobility Group MsHMG-Y Involved in Flowering Regulation in Medicago sativa L. [J]. Scientia Agricultura Sinica, 2022, 55(16): 3082-3092.
[12] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[13] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[14] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[15] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!