Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (14): 2910-2922.doi: 10.3864/j.issn.0578-1752.2013.14.007

• PLANT PROTECTION • Previous Articles     Next Articles

DSF Signal-Dependent Quorum Sensing in Plant Pathogenic Bacteria Xanthomonas

 ZHOU  Lian, WANG  Xing-Yu, HE  Ya-Wen   

  1. School of Life Sciences and Biotechnology, Shanghai Jiao Tong University/State Key Laboratory of Microbial Metabolism/National Center for Molecular Characterization of GMOs, Shanghai 200240
  • Received:2013-05-02 Online:2013-07-15 Published:2013-05-24

Abstract: It is now clear that quorum sensing (QS) is one of the most important cell-cell communications in bacteria and this community-wide genetic regulatory mechanism is involved in the regulation of many important biological activities. Since the 1980s, several types of QS signals have been identified. The diffusible signal factor (DSF),which was originally identified in Xanthomonas campestris pv. campestris (Xcc), represents another interesting type of QS signals found in Gram-negative bacteria. The rapid progress over the last 10 years has identified the chemical structures of the QS signal DSF, established the DSF regulon, and unveiled the general signaling pathways and mechanisms. RpfF is a key enzyme for DSF biosynthesis, which is modulated by a novel autoinduction mechanism involving protein-protein interaction between the DSF synthase RpfF and the sensor RpfC. DSF signal is sensed by RpfC/RpfG two component system and the signal sensing is coupled to intracellular regulatory networks through a second messenger cyclic di-GMP and a global regulator Clp. Genomic and genetic analyses show that the DSF signal regulates diverse biological functions including virulence, biofilm dispersal, and ecological competence. Evidence is emerging that the DSF QS system is conserved in a range of plant and human bacterial pathogens.

Key words: Xanthomonas , quorum sensing , DSF

[1]Kempner E S, Hanson F E. Aspects of light production by Photobacterium fischeri. Journal of Bacteriology, 1968, 95(3): 975-979.

[2]Eberhard A. Inhibition and activation of bacterial luciferase synthesis. Journal of Bacteriology, 1972, 109(3): 1101-1105.

[3]Eberhard A, Burlingame A L, Eberhard C, Kenyon G L, Nealson K H, Oppenheimer N J. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry, 1981, 20(9): 2444-2449.

[4]Fuqua W C, Winans S C, Greenberg E P. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 1994, 176(2): 269-275.

[5]Reading N C, Sperandio V. Quorum sensing: the many languages of bacteria. FEMS Microbiology Letters, 2006, 254(1): 1-11.

[6]Rutherford S T, Bassler B L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspectives in Medicine, 2012, 2(11): a012427.

[7]Bibb M J. Regulation of secondary metabolism in Streptomycetes. Current Opinion in Microbiology, 2005, 8(2): 208-215.

[8]Xavier K B, Bassler B L. LuxS quorum sensing: more than just a numbers game. Current Opinion in Microbiology, 2003, 6(2): 191-197.

[9]Diggle S P, Matthijs S, Wright V J, Fletcher M P, Chhabra S R, Lamont I L, Kong X, Hider R C, Cornelis P, Cámara M, Williams P. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chemistry & Biology, 2007, 14(1): 87-96.

[10]Leyns F, De Cleene M, Swings J, De Ley J. The host range of the genus Xanthomonas. The Botanical Reviews, 1984, 50(3): 308-355.

[11]Barber C E, Tang J L, Feng J X, Pan M Q, Wilson T J G, Slater H, Dow J M, Williams P, Daniels M J. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Molecular Microbiology, 1997, 24(3): 555-566.

[12]Wang L H, He Y W, Gao Y, Wu J E, Dong Y H, He C, Wang S X, Weng L X, Xu J L, Tay L, Fang R X, Zhang L H. A bacterial cell-cell communication signal with cross-kingdom structural analogues. Molecular Microbiology, 2004, 51(3): 903-912.

[13]He Y W, Xu M, Lin K, Ng Y J, Wen C M, Wang L H, Liu Z D, Zhang H B, Dong Y H, Dow J M, Zhang L H. Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions. Molecular Microbiology, 2006, 59(2): 610-622.

[14]He Y W, Wang C, Zhou L, Song H, Dow J M, Zhang L H. Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction. Journal of Biological Chemistry, 2006, 281: 33414-33421.

[15]He Y W, Ng A Y, Xu M, Lin K, Wang L H, Dong Y H, Zhang L H. Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Molecular Microbiology, 2007, 64(2): 281-292.

[16]He Y W, Zhang L H. Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiology Reviews, 2008, 32(5): 842-857.

[17]Deng Y, Wu J E, Tao F, Zhang L H. Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chemical Reviews, 2011, 111(1): 160-173.

[18]Ryan R P, Dow J M. Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends in Microbiology, 2011, 19(3): 145-152.

[19]Tang J L, Liu Y N, Barber C E, Dow J M, Wootton J C, Daniels M J. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellar enzymes and polysaccharide in Xanthomonas campestris pv. campestris. Molecular and General Genetics, 1991, 226(3): 409-417.

[20]Slater H, Alvarez-Morales A, Barber C E, Daniels M J, Dow J M. A two-component system involving an HD-GYP domain protein links cell-cell signaling to pathogenicity gene expression in Xanthomonas campestris. Molecular Microbiology, 2000, 38(5): 986-1003.

[21]He Y W, Wu J, Cha J S, Zhang L H. Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiology, 2010, 10: 187.

[22]Huang T P, Wong A C. Extracellular fatty acids facilitate flagella-independent translocation by Stenotrophomonas maltophilia. Research in Microbiology, 2007, 158(8/9): 702-711.

[23]Deng Y, Wu J, Eberl L, Zhang L H. Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the Burkholderia cepacia complex. Applied and Environmental Microbiology, 2010, 76(14): 4675-4683.

[24]Dow J M, Crossman L, Findlay K, He Y Q, Feng J X, Tang J L. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proceedings of the Natural Academy of Sciences of the United States of America, 2003, 100(19): 10995-11000.

[25]Hsiao Y M, Zheng M H, Hu R M, Yang T C, Tseng Y H. Regulation of the pehA gene encoding the major polygalacturonase of Xanthomonas campestris by Clp and RpfF. Microbiology, 2008, 154(3): 705-713.

[26]Hsiao Y M, Fang M C, Sun P F, Tseng Y H. Clp and RpfF up-regulate transcription of pelA1 gene encoding the major pectate lyase in Xanthomonas campestris pv. campestris. Journal of Agricultural and Food Chemistry, 2009, 57(14): 6207-6215.

[27]Hsiao Y M, Liu Y F, Fang M C, TsengY H. Transcriptional regulation and molecular characterization of the manA gene encoding the biofilm dispersing enzyme mannan endo-1,4-beta-mannosidase in Xanthomonas campestris. Journal of Agricultural and Food Chemistry, 2010, 58(3): 1653-1663.

[28]Hsiao Y M, Liu Y F, Huang Y L, Lee P Y. Transcriptional analysis of pmeA gene encoding a pectin methylesterase in Xanthomonas campestris pv. campestris. Research in Microbiology, 2011, 162(3): 270-278.

[29]Chatterjee S, Sonti R V. rpfF mutants of Xanthomonas oryzae pv. oryzae are deficient for virulence and growth under low iron conditions. Molecular Plant-Microbe Interactions, 2002, 15(5): 463-471.

[30]Jeong K S, Lee S E, Han J W, Yang S U, Lee B M, Noh T H, Cha J S. Virulence reduction and differing regulation of virulence genes in rpf mutants of Xanthomonas oryzae pv. oryzae. The Plant Pathology Journal, 2008, 24(2): 143-151.

[31]Rai R, Ranjan M, Pradhan B B, Chatterjee S. Atypical regulation of virulence-associated functions by a diffusible signal factor in Xanthomonas oryzae pv. oryzae. Molecular Plant Microbe Interactions, 2012, 25(6): 789-801.

[32]殷芳群, 赵延存, 刘春晖, 钱国良, 范加勤, 胡白石, 刘凤权. 水稻细菌性条斑病菌中受DSF调控的鞭毛基因flgD、flgE的功能分析. 微生物学报, 2011, 51(7): 891-897.

Yin F Q, Zhao Y C, Liu C H, Qian G L, Fan J Q, Hu B S, Liu F Q. Analysis of the flgD and figE genes regulated by diffusible signal factor in Xanthomonas oryzae pv. oryzicola. Acta Microbiologica Sinica, 2011, 51(7): 891-897. (in Chinese)

[33]Zhao Y, Qian G, Fan J, Yin F, Zhou Y, Liu C, Shen Q, Hu B, Liu F. Identification and characterization of a novel gene, hshB, in Xanthomonas oryzae pv. oryzicola co-regulated by quorum sensing and clp. Phytopathology, 2012, 102(3): 252-259.

[34]Zhao Y, Qian G, Yin F, Fan J, Zhai Z, Liu C, Hu B, Liu F. Proteomic analysis of the regulatory function of DSF-dependent quorum sensing in Xanthomonas oryzae pv. oryzicola. Microbial Pathogensis, 2011, 50(1): 48-55.

[35]Siciliano F, Torres P, Sendín L, Bermejo C, Filippone P, Vellice G, Ramallo J, Castagnaro A, Vojnov A, Marano M R. Analysis of the molecular basis of Xanthomonas axonopodis pv. citri pathogenesis in Citrus limon. Electronic Journal of Biotechnology, 2006, 9: 199.

[36]Guo Y, Zhang Y, Li J L, Wang N. Diffusible signal factor-mediated quorum sensing plays a central role in coordinating gene expression of Xanthomonas citri subsp. citri. Molecular Plant Microbe Interactions, 2012, 25(2): 165-179.

[37]Thowthampitak J, Shaffer BT, Prathuangwong S, Loper J E. Role of rpfF in virulence and exoenzyme production of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean. Phytopathology, 2008, 98(12): 1252-1260.

[38]He Y W. Cell-cell communication in Xanthomonas campestris pv. campestris[D]. Singapore: National University of Singapore, 2006.

[39]Tang J L, Feng J X, Li Q Q, Wen H X, Zhou D L, Wilson T J, Dow J M, Ma Q S, Daniels M J. Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv. oryzae: involvement in exopolysaccharide production and virulence to rice. Molecular Plant Microbe Interactions, 1996, 9(7): 664-666.

[40]赵延存, 刘春晖, 钱国良, 殷芳群, 周奕景, 宋志伟, 刘凤权. 水稻细菌性条斑病菌RpfCxoc/RpfGxoc双组分系统的功能. 微生物学报, 2012, 52(4): 449-456.

Zhao Y C, Liu C H, Qian G L, Yin F Q, Zhou Y J, Song Z W, Liu F Q. Function of a two-component system RpfCxoc/RpfGxoc in Xanthomonas oryzae pv. oryzicola. Acta Microbiologica Sinica, 2012, 52(4):449-456. (in Chinese)

[41]Hengge R. Principles of c-di-GMP signalling in bacteria. Nature Reviews Microbiology, 2009, 7(4): 263-273.

[42]Sondermann H, Shikuma N J, Yildiz F H. You've come a long way: c-di-GMP signaling. Current Opinion in Microbiology, 2011, 15(2): 140-146.

[43]Ryan R P, Fouhy Y, Lucey J F, Jiang B L, He Y Q, Feng J X, Tang J L, Dow J M. Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Molecular Microbiology, 2007, 63(2): 429-442.

[44]Ryan R P, Fouhy Y, Lucey J F, Crossman L C, Spiro S, He Y W, Zhang L H, Heeb S, Camara M, Williams P, Dow J M. Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proceedings of the Natural Academy of Sciences of the United States of America, 2006, 103(17): 6712-6717.

[45]de Crecy-Lagard V, Glaser P, Lejeune P, Sismeiro O, Barber C E, Daniels M J, Danchin A. A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity. Journal of Bacteriology, 1990, 172(10): 5877-5883.

[46]Tao F, He Y W, Wu D H, Swarup S, Zhang L H. The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. Journal of Bacteriology, 2010, 192(4): 1020-1029.

[47]Leduc J L, Roberts G P. Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. Journal of Bacteriology, 2009, 191(22): 7121-7122.

[48]Chin K H, Lee Y C, Tu Z L, Chen C H, Tseng Y H, Yang J M, Ryan R P, McCarthy Y, Dow J M, Wang A H J, Chou S H. The cAMP receptor-like protein Clp is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. Journal of Molecular Biology, 2010, 396(3): 646-662.

[49]Dong Q, Ebright R H. DNA binding specificity and sequence of Xanthomonas campestris catabolite gene activator protein-like protein. Journal of Bacteriology, 1992, 174(16): 5457-5461.

[50]Zheng D, Constantinidou C, Hobman J L, Minchin S D. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Research, 2004, 32(19): 5874-5893.

[51]Lee M C, Weng S F, Tseng Y H. Flagellin gene fliC of Xanthomonas campestris is upregulated by transcription factor Clp. Biochemical and Biophysical Research Communications, 2003, 307(3): 647-652.

[52]Hsiao Y M, Liao H Y, Lee M C, Yang T C, Tseng Y H. Clp upregulates transcription of engA gene encoding a virulence factor in Xanthomonas campestris by direct binding to the upstream tandem Clp sites. FEBS Letters, 2005, 579(17): 3525-3533.

[53]Hsiao Y M, Tseng Y H. Transcription of Xanthomonas campestris prt1 gene encoding protease 1 increases during stationary phase and requires global transcription factor Clp. Biochemical and Biophysical Research Communications, 2002, 295(1): 43-49.

[54]Chen C H, Lin N T, Hsiao Y M, Yang C Y, Tseng Y H. Two non-consensus Clp binding sites are involved in upregulation of the gum operon involved in xanthan polysaccharide synthesis in Xanthomonas campestris pv. campestris. Research in Microbiology, 2010, 161(7): 583-589.

[55]Hsiao Y M, Liu Y F, Fang M C, Song W L. XCC2731, a GGDEF domain protein in Xanthomonas campestris, is involved in bacterial attachment and is positively regulated by Clp. Microbiological Research, 2011, 166(7): 548-565.

[56]Liu Y F, Liao C T, Song W L, Hsu P C, Du S C, Lo H H, Hsiao Y M. GsmR, a response regulator with an HD-related output domain in Xanthomonas campestris, is positively controlled by Clp and is involved in the expression of genes responsible for flagellum synthesis. FEBS Journal, 2013, 280(1): 199-213.

[57]Hsiao Y M, Song W L, Liao C T, Lin I H, Pan M Y, Lin C F. Transcriptional analysis and functional characterization of XCC1294 gene encoding a GGDEF domain protein in Xanthomonas campestris pv. campestris. Archives of Microbiology, 2012, 194(4): 293-304.

[58]Ryan R P, McCarthy Y, Andrade M, Farah C S, Armitage J P, Dow J M. Cell-cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proceedings of the Natural Academy of Sciences of the United States of America, 2010, 107(13): 5989-5994.

[59]Ryan R P, McCarthy Y, Kiely P A, O'Connor R, Farah C S, Armitage J P, Dow J M. Dynamic complex formation between HD-GYP, GGDEF and PilZ domain proteins regulates motility in Xanthomonas campestris. Molecular Microbiology, 2012, 86(3): 557-567.

[60]Tao F, Swarup S, Zhang L H. Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environmental Microbiology, 2010, 12(12): 3159-3170.

[61]Cheng Z, He Y W, Lim S C, Qamra R, Walsh M A, Zhang L H, Song H. Structural basis of the sensor-synthase interaction in autoinduction of the quorum sensing signal DSF biosynthesis. Structure, 2010, 18(9): 1199-1209.

[62]Boon C, Deng Y, Wang L H, He Y, Xu J L, Fan Y, Pan S Q, Zhang L H. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. The ISME Journal, 2008, 2(1): 27-36.

[63]Bi H, Christensen Q H, Feng Y, Wang H, Cronan J E. The Burkholderia cenocepacia BDSF quorum sensing fatty acid is synthesized by a bifunctional crotonase homologue having both dehydratase and thioesterase activities. Molecular Microbiology, 2012, 83(4): 840-855.

[64]Agrios G N. Plant Pathology. 5th ed. USA: San Diego Academic Press, 2005: 46.

[65]Poplawsky A R, Chun W. Xanthomonas campestris pv. campestris requires a functional pigB for epiphytic survival and host infection. Molecular Plant-Microbe Interactions, 1998, 11(6): 466-475.

[66]Hayward A C. The hosts of Xanthomonas//Swings J G, Civerolo E L. Xanthomonas. London, United Kingdom: Chapman and Hall, 1993: 1-119.

[67]Mew T W, Natural M P. Management of Xanthomonas diseases// Swings J G, Civerolo E L. Xanthomonas. London, United Kingdom: Chapman and Hall, 1993: 341-358.

[68]何勇强, 唐继良. 十字花科黑腐病菌基因组分析与病理基因组学//喻子牛, 邵宗泽. 中国微生物基因组研究. 北京: 科学出版社, 2012: 446-485.

He Y Q, Tang J L. Genome analysis and pathological genome of Xantyomonas campestris pv. campestris//Yu Z N, Shao Z Z. Microbial Genome Research in China. Beijing: Science Press, 2012: 446-485. (in Chinese)

[69]Hendson M, Purcell A H, Chen D, Smart C, Guilhabert M, Kirkpatrick B. Genetic diversity of Pierce's disease strains and other pathotypes of Xylella fastidiosa. Applied and Environmental Microbiology, 2001, 67(2): 895-903.

[70]Simionato C A V, da Silva D S, Lambais M R, Carrilho E. Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS. Journal of Mass Spectrometry, 2007, 42(4): 490-496.

[71]Newman K L, Almeida R P P, Purcell A H, Lindow S E. Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proceedings of the Natural Academy of Sciences of the United States of America, 2004, 101(6): 1737-1742.

[72]Chatterjee S, Wistrom C, Lindow S E. A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proceedings of the Natural Academy of Sciences of the United States of America, 2008, 105(7): 2670-2675.

[73]Huang T P, Wong A C. A cyclic AMP receptor protein regulated cell-cell communication system mediates expression of a FecA homologue in Stenotrophomonas maltophilia. Applied and Environmental Microbiology, 2007, 73(15): 5034-5040.

[74]Fouhy Y, Scanlon K, Schouest K, Spillane C, Crossman L, Avison M B, Ryan R P, Dow J M. Diffusible signal factor-dependent cell-cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia. Journal of Bacteriology, 2007, 189(13): 4964-4968.

[75]刘轶儒, 徐菲菲, 钱国良, 范加勤, 胡白石, 刘凤权. 产酶溶杆菌rpfG基因的克隆与功能分析. 南京农业大学学报, 2013, 36(2): 45-50.

Liu Y R, Xu F F, Qian G L, Fan J Q, Hu B S, Liu F Q. Clone and functional analysis of gene rpfG in Lysobacter enzymogenes strain OH11. Journal of Nanjing Agricultural University, 2013, 36(2): 45-50. (in Chinese)

[76]McCarthy Y, Yang L, Twomey K B, Sass A, Tolker-Nielsen T, Mahenthiralingam E, Dow J M, Ryan R P. A sensor kinase recognizing the cell-cell signal BDSF (cis-2-dodecenoic acid) regulates virulence in Burkholderia cenocepacia. Molecular Microbiology, 2010, 77(5): 1220-1236.

[77]Ryan R P, Fouhy Y, Garcia B F, Watt S A, Niehaus K, Yang L, Tolker-Nielsen T, Dow J M. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Molecular Microbiology, 2008, 68(1): 75-86.

[78]Thowthampitak J, Shaffer B T, Prathuangwong S, Loper J E. Role of rpfF in virulence and exoenzyme production of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean. Phytopathology, 2008, 98(12): 1252-1260.
[1] FENG AiQing,WANG CongYing,ZHANG MeiYing,CHEN Bing,FENG JinQi,CHEN KaiLing,WANG WenJuan,YANG JianYuan,SU Jing,ZENG LieXian,CHEN Shen,ZHU XiaoYuan. Pathotype Analysis of Xanthomonas oryzae pv. oryzae in Main Rice Producing Regions of China and Establishment of Differential Hosts of Near-Isogenic Lines [J]. Scientia Agricultura Sinica, 2022, 55(21): 4175-4195.
[2] XIAO GuiHua,WEN Kang,HAN Jian,HAO ChenXing,YE RongChun,ZHU YiChi,XIAO ShunYuan,DENG ZiNiu,MA XianFeng. Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker [J]. Scientia Agricultura Sinica, 2022, 55(19): 3767-3778.
[3] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[4] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[5] QIN XiuJuan,QI JingJing,DOU WanFu,CHEN ShanChun,HE YongRui,LI Qiang. Identification of Rboh Family and the Response to Hormone and Citrus Bacterial Canker in Citrus [J]. Scientia Agricultura Sinica, 2020, 53(20): 4189-4203.
[6] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[7] ZOU XiuPing,LONG JunHong,PENG AiHong,CHEN Min,LONG Qin,CHEN ShanChun. Overexpression of CsGH3.6 Enhanced Resistance to Citrus Canker Disease by Inhibiting Auxin Signaling Transduction [J]. Scientia Agricultura Sinica, 2019, 52(21): 3806-3818.
[8] DOU WanFu,QI JingJing,HU AnHua,CHEN ShanChun,PENG AiHong,XU LanZhen,LEI TianGang,YAO LiXiao,HE YongRui,LI Qiang. Screening of Interacting Proteins of Anti-Canker Transcription Factor CsBZIP40 in Citrus by GST Pull-Down Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2019, 52(13): 2243-2255.
[9] SUN Yu-jing, MA Wen-xiu, CAI Lu-lu, LIU Liang, ZOU Li-fang, CHEN Gong-you. Identification of a Protein both in Tobacco and Rice that Interacts with an HR-elicitor SsbX of Xanthomonas oryzae pv. oryzicola [J]. Scientia Agricultura Sinica, 2015, 48(4): 683-694.
[10] LI Xiao-Tong, YANG Feng-Huan, LIANG Shi-Min, TIAN Fang, CHEN Hua-Min, HE Chen-Yang. Molecular Characterization of the Negative Regulator PXO_02944 in Virulence, Extracellular Polysaccharide Production and Biofilm Formation in Xanthomonas oryzae pv. oryzae [J]. Scientia Agricultura Sinica, 2014, 47(13): 2563-2570.
[11] GUAN Ming-Li, DOU Shi-Juan, LI Xue-Jiao, JIA Lin, SHI Jia-Nan, ZENG Xiang-Ran, JIA Meng, GUO Mei-Cen, LIU Li-Juan, LI Li-Yun, LIU Guo-Zhen. Expression of Pathogenesis-Related Proteins in the Interactions Between Rice and Xanthomonas oryzae pv. oryzae [J]. Scientia Agricultura Sinica, 2013, 46(20): 4179-4188.
[12] LI Zheng, XIONG Li, JI Zhi-Yuan, ZOU Li-Fang, ZOU Hua-Song, CHEN Gong-You. Mechanisms of Rice Resistance (Susceptibility) Manipulated by Diverse TALEs of Xanthomonas oryzae pv. oryzae and pv. oryzicola and Potential Utilization in Rice Breeding [J]. Scientia Agricultura Sinica, 2013, 46(14): 2894-2901.
[13] ZHOU Hua-Fei, LUO Chu-Ping, WANG Xiao-Yu, ZHANG Rong-Sheng, CHEN Zhi-Yi. Construction of Bacillus subtilis Bs916 Mutant Libraries by Transposon Tagging and Cloning the Genes to the Organism’s Anti-Bacterial Activities [J]. Scientia Agricultura Sinica, 2013, 46(11): 2232-2239.
[14] LI Xin, LI Xin-Ling, PANG Xin-Yue, ZHU Wen-Xue, FAN Jin-Ling, LUO Lei, DU Lin, WANG Na, WANG Li-Ping. Spatio-Temporal Localization Changes of Endogenous Hydrogen Peroxide During Cell Division Cycle of Xanthomonas oryzae pv. oryzae [J]. Scientia Agricultura Sinica, 2012, 45(8): 1499-1504.
[15] CHEN Hong-Yu, XU Xin-Xin, DUAN Can-Xing, WANG Shu-Min, ZHU Zhen-Dong. Identification of Pathogens Causing Common Bacterial Blight on Common Bean (Phaseolus vulgaris L.) [J]. Scientia Agricultura Sinica, 2012, 45(13): 2618-2627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!