Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (8): 1499-1504.doi: 10.3864/j.issn.0578-1752.2012.08.005

• PLANT PROTECTION • Previous Articles     Next Articles

Spatio-Temporal Localization Changes of Endogenous Hydrogen Peroxide During Cell Division Cycle of Xanthomonas oryzae pv. oryzae

 LI  Xin, LI  Xin-Ling, PANG  Xin-Yue, ZHU  Wen-Xue, FAN  Jin-Ling, LUO  Lei, DU  Lin, WANG  Na, WANG  Li-Ping   

  1. 1.河南科技大学食品与生物工程学院,河南洛阳 471003
    2.中国农业科学院植物保护研究所植物病虫害生物学国家重点实验室,北京100193
    3.河南科技大学医学技术与工程学院,河南洛阳 471003
  • Received:2011-08-25 Online:2012-04-15 Published:2011-09-20

Abstract: 【Objective】The objective of this study is to investigate the changes of spatio-temporal localization of endogenous hydrogen peroxide (H2O2) in strains of Xanthomonas oryzae pv. oryzae, and to illustrate the physiological function of H2O2 in bacterial proliferation. 【Method】 Histochemical methods through transmission electron microscope were used to observe localization of endogenous H2O2. 【Result】 Even though the levels of endogenous H2O2 production were different among various strains, the produced H2O2 was localized in the cell wall of all Xanthomonas oryzae pv. oryzae strains tested. Interestingly, the accumulated H2O2 was also localized in the mesosome-like structure and nucleoids during the cell division cycle of strains. Furthermore, results revealed the quantitative and dimensional changes of H2O2 accumulation in the two additional locations. 【Conclusion】Additional locations of the accumulated H2O2 are closely associated with the process of cell division of all Xanthomonas oryzae pv. oryzae strains investigated. Spatio-temporal localization changes of endogenous H2O2 should be an ubiquitous phenomenon during cell division cycle of bacterium. H2O2 may play key roles in bacterial proliferation.

Key words: cell division, hydrogen peroxide, localization, mesosome-like structure, nucleoid, Xanthomonas oryzae pv. oryzae

[1]Barth C, Moeder W, Klessig D F, Conklin P L. The timing of senescence and response to pathogens is altered in the ascorbate-de?cient Arabidopsis mutant vitamin c-1. Plant Physiology, 2004, 134(4): 1784-1792.

[2]Hoidal J R. Reactive oxygen species and cell signaling. American Journal of Respiratory Cell and Molecular Biology, 2001, 25(6): 661-663.

[3]Demidchik V, Shabala S N, Coutts K B, Tester M A, Davies J M. Free oxygen radicals regulate plasma membrane Ca2+ - and K+ -permeable channels in plant root cells. Journal of Cell Science, 2003, 116: 81-88.

[4]Turpaev K T. Reactive oxygen species and regulation of gene expression. Biochemistry (Moscow), 2002, 67(3): 281-292.

[5]Burdon R H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radical Biological and Medicine, 1995, 18(4): 775-794.

[6]Stone J R, Collins T. The role of hydrogen peroxide in endothelial proliferative responses. Endothelium, 2002, 9(4): 231-238.

[7]González-Flecha B, Demple B. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. The Journal of Biological Chemistry, 1995, 270(23): 13681-13687.

[8]Moy T I, Mylonakis E, Calderwood S B, Ausubel F M. Cytotoxicity of hydrogen peroxide produced by Enterococcus faecium. Infection and Immunity, 2004, 72(8): 4512-4520.

[9]Huycke M M, Moore D R. In vivo production of hydroxyl radical by Enterococcus faecalis colonizing the intestinal tract using aromatic hydroxylation. Free Radical Biological and Medicine, 2002, 33(6): 818-826.

[10]王成龙, 李振钢, 吴  可, 丛建波, 赵  皿, 孙存普. 变形链球菌活性氧代谢规律的初步探讨. 中华口腔医学杂志, 2001, 36(3): 202-205.

Wang C L, Li Z G, Wu K, Cong J B, Zhao M, Sun C P. Preliminary study on the rules of streptococcus mutans reactive oxygen species metabolism. Chinese Journal of Stomatology, 2001, 36(3): 202-205. (in Chinese)

[11]Seaver L C, Imlay A J. Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? Journal of Biological Chemistry, 2004, 279: 48742-48750.

[12]Huycke M M, Joyce W, Wack M F. Augmented production of extracellular superoxide by blood isolates of Enterococcus faecalis. Journal of Infectious Diseases, 1996, 173(3): 743-745.

[13]Thannickal V J, Fanburg B L. Reactive oxygen species in cell signaling. American Journal of Physiology-Lung Cell and Molecular Physiology, 2000, 279(6): 1005-1028.

[14]Leyns F, De Cleene M, Swings J G, De Ley J. The host range of the genus Xanthomonas. The Botanical Review, 1984, 50(3): 308-356.

[15]Li H Y, Wang J S. Release of active oxygen species from phytopathogenic bacteria and their regulation. Chinese Science Bulletin, 1999, 44(1): 71-75.

[16]李  欣, 于慧春, 庞新跃, 李红玉, 王金生. 水稻白叶枯病菌内源过氧化氢的产生及定位. 南京农业大学学报, 2009, 32(3): 160-163.

Li X, Yu H C, Pang X Y, Li H Y, Wang J S. Production and localization of endogenous hydrogen peroxide in Xanthomonas oryzae pv. oryzae. Journal of Nanjing Agricultural University, 2009, 32(3): 160-163. (in Chinese)

[17]Able A J, Guest D I, Sutherland M W. Hydrogen peroxide yields during the incompatible interaction of tobacco suspension cells inoculated with Phytophthora nicotianae. Plant Physiology, 2000, 124(2): 899-910.

[18]Bestwick C S, Brown I R, Bennett M H, Mans?eld J W. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv. phaseolicola. Plant Cell, 1997, 9(2): 209-221.

[19]Santhana Raj L, Hing H L, Baharudin O, Teh Hamidah Z, Aida Suhana R, Nor Asiha C P, Vimala B, Paramsarvaran S, Sumarni G, Hanjeet K. Mesosomes are a definite event in antibiotic-treated Staphylococcus aureus ATCC 25923. Tropical Biomedicine, 2007, 24(1): 105-109.

[20]Rucinsky T E, Cota-Robles E H. Mesosome structure in Chromobacterium violaceum. Journal of Bacteriology, 1974, 118(2): 717-724.

[21]Balkwill D L, Stevens Jr S E. Effects of penicillin G on mesosome-like structures in Agmenellum quadruplicatum. Antimicrobial Agents and Chemotherapy, 1980, 17(3): 506-509.
[1] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[2] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[3] XU HuanHuan,LI Yi,GAO Wei,WANG YongQin,LIU LeCheng. Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa) [J]. Scientia Agricultura Sinica, 2021, 54(19): 4169-4178.
[4] WANG Hao,YIN Lian,LIU JieXia,JIA LiLi,DING Xu,SHEN Di,FENG Kai,XU ZhiSheng,XIONG AiSheng. The Carotenoid Cleavage Dioxygenases Gene AgCCD4 Regulates the Pigmentation of Celery Tissues with Different Colors [J]. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294.
[5] SUN HongYing,WANG Yan,LI WeiJia,ZHU TianShu,JIANG Ying,XU Yan,WU QingYue,ZHANG ZhiHong. Expression Characteristics and Function of FveD27 in Woodland Strawberry [J]. Scientia Agricultura Sinica, 2021, 54(10): 2179-2191.
[6] YUAN XinBo,CHENG TingTing,XI XiaoHan,CHEN ZhangYu,WANG RuiHong,KE WeiDong,GUO HongBo. Screening of Polyphenol Oxidase Interaction Proteins from Nelumbo nucifera and Their Verification [J]. Scientia Agricultura Sinica, 2020, 53(18): 3777-3791.
[7] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[8] GE Ting,HUANG Xue,XIE RangJin. Cloning, Subcellular Localization and Expression Analysis of CitPG34 in Citrus [J]. Scientia Agricultura Sinica, 2019, 52(19): 3404-3416.
[9] JIANG MengTing,ZHU Ning,GONG HongYong,HOU YingJun,YU XinYi,QU ShenChun. Cloning and Function Analysis of Gibberellin Insensitive DkGAI2 Gene in Nantongxiaofangshi (Diospyros kaki Linn. cv. nantongxiaofangshi) [J]. Scientia Agricultura Sinica, 2019, 52(19): 3417-3429.
[10] YI Min,LÜ Qing,LIU KeKe,WANG LiJun,WU YuJiao,ZHOU ZeYang,LONG MengXian. Expression, Purification and Localization Analysis of Polar Tube Protein 2 (NbPTP2) from Nosema bombycis [J]. Scientia Agricultura Sinica, 2019, 52(10): 1830-1838.
[11] CHEN JingNan,MA XiaoLan,WANG Zhen,LI ShiJin,XIE Hao,YE XingGuo,LIN ZhiShan. SSR Sequences and Development of PCR Markers Based on Transcriptome of Dasypyrum villosum No.1026 [J]. Scientia Agricultura Sinica, 2019, 52(1): 1-10.
[12] CHEN DongKai, ZHANG LinYa, XING ZhenLong, LEI ZhongRen. Identification and Function of the OBP13 Protein from the Leafminer (Liriomyza sativae) [J]. Scientia Agricultura Sinica, 2018, 51(5): 893-904.
[13] SONG HuiFang, ZHANG JianQin, FAN YunHe, LI Tao, MA EnBo, ZHANG JianZhen. Antibody Preparation and Subcelluar Localization of dsRNA Degrading Enzyme in Locusta migratoria [J]. Scientia Agricultura Sinica, 2018, 51(19): 3704-3713.
[14] XU Rong, ZHANG YuanYuan, LI XiaoChun, CHENG GuiFeng, HE ChuanChuan, GUO Lu, LI Hao, LIU JinMing, GU ShaoPeng, JIN YaMei. Cloning, Expression and Function Analysis of Schistosoma Japonicum ELAV-like 1 [J]. Scientia Agricultura Sinica, 2018, 51(13): 2600-2613.
[15] WEI ZhouLing, PENG HaoRan, PAN Qi, ZHANG YongZhi, PU YunDan, WU GenTu, QING Ling, SUN XianChao. Subcellular Localization of the Ribosome-Inactivating Protein α-MC and Its Antiviral Effect on TMV [J]. Scientia Agricultura Sinica, 2017, 50(5): 840-848.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!