Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (9): 1756-1761.doi: 10.3864/j.issn.0578-1752.2013.09.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mechanism Analysis of AtBT4 from Arabidopsis thaliana Against Botrytis cinerea

 HAO  Cong-Cong, YANG  Ping, CHEN  Zhan, JIA  Jiao, ZHAO  Bin, SI  He-Long, HAN  Jian-Min, XING  Ji-Hong, DONG  Jin-Gao   

  1. 1.College of Life Science, Agricultural University of Hebei/Mycotoxin and Molecular Plant Pathology Laboratory, Baoding 071001, Hebei
    2.Institute of Fruit Tree, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050061
    3.Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 050061, Jilin
  • Received:2012-12-30 Online:2013-05-01 Published:2013-03-18

Abstract: 【Objective】The objective of this study is to reveal the interactions between AtBT4 gene and SA, JA signal pathways in Arabidopsis thaliana resistance to Botrytis cinerea.【Method】RT-PCR technology was used to analyze the expression of AtBT4 in Col-0 treated with SA, its analogues BTH, JA, ACC and B. cinerea, the expression of AtBT4 in various signals pathway mutants following SA or JA treatment and the expression of resistance-related genes in Col-0, bt4 and AtBT4 complemented plants. 【Result】The expression of AtBT4 in Col-0 treated with JA and B. cinerea was significantly enhanced. But no significant difference was observed in AtBT4 expression between the JA-insensitive jar1 mutants treated for 0 and 12 h with JA. The AtBT4 expression was significantly down-regulated in the eds5, sid2, and npr1 mutants compared with the Col-0 plants. Compared with the Col-0 and AtBT4 complemented plants, the expression of PR1, PR4, PDF1.2 and BIK1 genes was significantly down-regulated in the bt4 mutants. 【Conclusion】 The AtBT4 gene expression is induced by JA and B. cinerea and the AtBT4 gene deficiency alters expression of resistance-related genes, PR1, PR4, PDF1.2 and BIK1, suggesting the AtBT4 gene may be involved in the regulation of SA and JA singnal pathway to impact the resistance to B. cinerea in A. thaliana.

Key words: AtBT4 , Arabidopsis thaliana , Botrytis cinerea , disease-resistant pathway

[1]Lorenzo O, Piqueras R, Sanchez-Serrano J J, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell, 2003, 15(1): 165-178.

[2]Raffaele S, Rivas S, Roby D. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Letter, 2006, 580(14): 3498-3504.

[3]Froidure S, Canonne J, Daniel X, Jauneau A, Briere C, Roby D, Rivas S. AtsPLA2-alpha nuclear relocalization by the Arabidopsis transcription factor AtMYB30 leads to repression of the plant defense response. Proceedings of the National Academy of Sciences of the USA, 2010, 107(34): 15281-15286.

[4]Ramirez V, Agorio A, Coego A, Garcia-Andrade J, Hernandez M J, Balaguer B, Ouwerkerk P B, Zarra I, Vera P. MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis. Plant Physiology, 2011, 155(4): 1920-1935.

[5]乔孟, 于延冲, 向凤宁. 拟南芥R2R3-MYB类转录因子在环境胁迫中的作用. 生命科学, 2009, 21(1): 145-150.

Qiao M, Yu Y C, Xiang F N. The roles of the Arabidopsis R2R3-MYB transcription factors in the stress responses. Chinese Bulletin of Life Sciences, 2009, 21(1): 145-150. (in Chinese)

[6]Lippok B, Birkenbihl R P, Rivory G, Brummer J, Schmelzer E, Logemann E, Somssich I E. Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Molecular Plant Microbe Interactions, 2007, 20(4): 420-429.

[7]Kim K C, Lai Z, Fan B, Chen Z. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. The Plant Cell, 2008, 20(9): 2357-2371.

[8]Hao C C, Jia J, Chen Z, Xing J H, Weng Q Y, Wang F R, Dong J G, Han J M. Functional analysis of BT4 of Arabidopsis thaliana in resistance against Botrytis cinerea. Australasian Plant Pathology, 2013, doi: 10.1007/s13313-013-0202-6.

[9]曾群, 陈慧勤, 赵淑清, 赵占军. 水杨酸对拟南芥防卫反应酶系的诱导. 华北农学报, 2005, 20(1): 75-77.

Zeng Q, Chen H Q, Zhao S Q, Zhao Z J. Induction of several defense response enzymes in Arabidopsis seedlings by salicylic acid. Acta Agriculturae Boreali-Sinica, 2005, 20(1): 75-77. (in Chinese)

[10]Gundlach H, Müller M J, Kutchan T M, Zenk M H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proceedings of the National Academy of Sciences of the USA, 1992, 89: 2389-2393.

[11]Dempsey D, Shah J, Klessig D F. Salicylic acid and disease resistance in plants. Critical Reviews in Plant Sciences, 1999, 18: 547-575.

[12]Klessig D F, Durner J, Noad R, Navarre D A, Wendehenne D, Kumar D, Zhou J M, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H. Nitric oxide and salicylic acid signaling in plant defense. Proceedings of the National Academy of Sciences of the USA, 2000, 97: 8849-8855.

[13]Shah J. The salicylic acid loop in plant defense. Current Opinion in Plant Biology, 2003, 6: 365-371.

[14]Greenberg J T, Guo A, Klessig D F, Ausubel F M. Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense functions. Cell, 1994, 77(4): 551-563.

[15]Ryals J A, Neuenschwander U H, Willits M G, Molina A, Steiner H Y, Hunt M D. Systemic acquired resistance. The Plant Cell, 1996, 8: 1809-1819.

[16]Dietrich R A, Delaney T P, Uknes S J, Ward E R, Ryals J A, Dangl J  L. Arabidopsis mutants simulating disease resistance response. Cell, 1994, 77: 565-577.

[17]徐伟, 严善春. 茉莉酸在植物诱导防御中的作用. 生态学报, 2005, 25(8): 2074-2082.

Xu W, Yan S C. The function of Jasmonic acid in induced plant defence. Acta Ecologica Sinica, 2005, 25(8): 2074-2082. (in Chinese)

[18]Singh I, Agrawal P, Shah K. In search of function for hypothetical proteins encoded by genes of SA-JA pathways in Oryza sativa by in silico comparison and structural modeling. Bioinformation, 2012, 8: 1-5.

[19]Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen H B, Lacy M, Austin M J, Parker J E, Sharma S B, Klessig D F, Martienssen R, Mattsson O, Jensen A B, Mundy J. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell, 2000, 103(7): 1111-1120.

[20]Brodersen P, Petersen M, Nielsen H B, Zhu S J, Newman M A, Shokat K M, Rietz S, Parker J, Mundy J. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. The Plant Journal, 2006, 47: 532-546.

[21]Hu Y, Dong Q, Yu D. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Science, 2012(185/186): 288-297.

[22]Zhang Y, Yang Y, Fang B, Gannon P, Ding P, Li X. Arabidopsis snc2-1D activates receptor-like protein-mediated immunity transduced through WRKY70. The Plant Cell, 2010, 22(9): 3153-3163.

[23]Ulker B, Shahid Mukhtar M, Somssich I E. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta, 2007, 226(1): 125-137.

[24]Chen X, Goodwin S M, Liu X, Chen X, Bressan R A, Jenks M A. Mutation of the RESURRECTION1 locus of Arabidopsis reveals an association of cuticular wax with embryo development. Plant Physiology, 2005, 139: 909-919.

[25]Hyung G M, Kristin A L, Eugene P P, Kosma D K, Cooper B R, Park H C, AbuQamar S, Boccongelli C, Miyazaki S, Consiglio F, Chilosi G, Bohnert H J, Bressan R A, Mengiste T, Jenks M A. The Arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs1. Plant Physiology, 2009, 115(1): 290-305.
[1] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[2] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[3] YaRu CHAI,YiJuan DING,SiYu ZHOU,WenJing YANG,BaoQin YAN,JunHu YUAN,Wei QIAN. Identification of the Resistance to Sclerotinia Stem Rot in HIGS-SsCCS Transgenic Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2020, 53(4): 761-770.
[4] ZHANG Cheng,HE MingLiang,WANG Wei,XU FangSen. Development of an Efficient Editing System in Arabidopsis by CRISPR-Cas9 [J]. Scientia Agricultura Sinica, 2020, 53(12): 2340-2348.
[5] WEI XinYan, HUANG YuanYuan, HUANG YaLi, DU KeJiu. Antagonism of Bacillus methylotrophicus Strain BH21 to Botrytis cinerea [J]. Scientia Agricultura Sinica, 2018, 51(5): 883-892.
[6] GONG ChangWei,QIN YiMan,QU JinSong,WANG XueGui. Resistance Detection and Mechanism of Strawberry Botrytis cinerea to Fludioxonil in Sichuan Province [J]. Scientia Agricultura Sinica, 2018, 51(22): 4277-4287.
[7] YUAN XueMei, WANG Min, ZANG JinPing, CAO HongZhe, ZHANG Kang, ZHANG Jing, XING JiHong, DONG JinGao . Relationship between kynurenine 3-monooxygenase gene BcKMO and cAMP signaling pathway in Botrytis cinerea [J]. Scientia Agricultura Sinica, 2018, 51(13): 2504-2512.
[8] GAO CuiZhu, YANG HongLing, HUANGXIA YuQi, HUANG JunBin, LI GuoQing, ZHENG Lu. Occurrence of Grey Mould Disease in Greenhouse-Grown Strawberry and Its Correlations with Epidemic Factors in Hubei Province [J]. Scientia Agricultura Sinica, 2017, 50(9): 1617-1623.
[9] CUI KaiDi, HUANG XuePing, HE LeiMing, ZHAI YongBiao, MU Wei, LIU Feng. The Inhibition Effect of Microbial Volatile Compound Benzothiazole on Botrytis cinerea [J]. Scientia Agricultura Sinica, 2017, 50(19): 3714-3722.
[10] YUAN Min, XING JiHong, WANG Li, GE WeiNa, GUO Di, ZHANG Lan. Interaction Between TFL1 and GRFs in Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2017, 50(10): 1772-1780.
[11] DU Hai, RAN Feng, LIU Jing, WEN Jing, MA Shan-shan, KE Yun-zhuo, SUN Li-ping, LI Jia-na. Genome-Wide Expression Analysis of Glucosinolate Biosynthetic Genes in Arabidopsis Across Diverse Tissues and Stresses Induction [J]. Scientia Agricultura Sinica, 2016, 49(15): 2879-2897.
[12] SUN Guang-hua, YUAN Huan-huan, FAN Xiao-cong, GU Hai-ke, SONG Mei-fang, XIAO Yang, MENG Fan-hua, GUO Lin, YANG Qing-hua, ZHAN Ke-hui, YANGJian-ping. Molecular Cloning and Arabidopsis Ectopic Expression of a Phytochrome B gene from Brassica oleracea [J]. Scientia Agricultura Sinica, 2015, 48(22): 4417-4427.
[13] HUANG Xin, GAO Meng-zhu, ZHANG Hao, GAO Jing, WANG Feng-ru, DONG Jin-gao. Effect of Brassinolide on Calcium Ion Distribution of Plant Cell [J]. Scientia Agricultura Sinica, 2015, 48(10): 2067-2075.
[14] WANG Hong-1, LIN Jing-1, LIU Gang-2, LI Chun-Xia-2, LUO Chang-Guo-3, LI Gang-Bo-2, ZHANG Zhen-2, CHANG You-Hong-1. Induced etr1-1 Expression in Petunias is Responsible for Its Tolerance to Botrytis cinerea [J]. Scientia Agricultura Sinica, 2014, 47(8): 1502-1511.
[15] FAN Jin-tao, JIA Jiao, JIANG Chen-xi, WANG Guan-yu, ZHANG Jing, XING Ji-hong, DONG Jin-gao. Regional Analysis of Transcription Activity and Screening of Interaction Proteins of AtMYB73 Transcription Factor in Arabidopsis [J]. Scientia Agricultura Sinica, 2014, 47(23): 4754-4762.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!