Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (22): 4417-4427.doi: 10.3864/j.issn.0578-1752.2015.22.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular Cloning and Arabidopsis Ectopic Expression of a Phytochrome B gene from Brassica oleracea

SUN Guang-hua1,2, YUAN Huan-huan1,2, FAN Xiao-cong1,2, GU Hai-ke3, SONG Mei-fang2,3, XIAO Yang4, MENG Fan-hua2, GUO Lin2, YANG Qing-hua1, ZHAN Ke-hui1, YANGJian-ping1,2   

  1. 1College of Agronomy, Henan Agricultural University, Zhengzhou 450002
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    3 Beijing Radiation Center, Beijing 100875
    4Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2015-06-22 Online:2015-11-16 Published:2015-11-16

Abstract: 【Objective】Cabbage (Brassica oleracea L.) is one of the most widely grown vegetable crops in the world. Cabbage is grown in spring and fall, however varieties need to be made suitable for cultivation all the year round. Study on the response of cabbage phytochromes to light and temperature is an important basis for crop improvement with respect to extending growth periods. Phytochromes of interest here are the red/far-red reversible photoreceptors. Among them, phyB is an essential red light receptor that predominantly mediates seedling photomorphogenesis and shade-avoidance response. The objective of this study was to isolate the phytochrome B gene in cabbage (i.e., BoPHYB), to explore its functions on seedling de-etiolation and shade avoidance by ectopic expression in Arabidopsis, and evaluate its potential in cabbage breeding. 【Method】The cDNA sequence of BoPHYB was isolated from leaves of a self incompatible line 12C. Bioinformatic analyses were employed to predict its function domains and to build a phylognetic relationship tree among plant phyB homologs. The pJIM19-Myc-BoPHYB binary construct was electroporated into the Agrobacterium tumefaciens strain GV3101 and then introduced into Arabidopsis thaliana (both of the wild type and phyB-9 mutant) via a floral dip method. Transgenic plants were selected on germination plates containing 50 mg/mL kanamycin for Myc-BoPHYB. Homozygous T3 or T4 transgenic plants were used for testing the seedling hypocotyl elongation and shade avoidance responses. 【Result】The reading frame of BoPHYB possesses 3 507 bp and encodes 1 168 amino acid residues (128.9 kD) deduced from the DNA sequence. Similar to both phyB protein of Arabidopsis thaliana (i.e., AtphyB) and Brassica rapa (i.e., BrphyB), BophyB contains one GAF domain, two PAS domains, one HisKA domain, and one HATPase_c domain. Phylogenetic analysis indicated that BophyB belongs to the same branch as BrphyB and AtphyB, while showing low similarity to phyB proteins from monocotyledonous species, such as common wheat, corn and rice. Compared with the wild type Col-0, the transgenic lines overexpressing BophyB in A. thaliana exhibited much shorter hypocotyl elongation under red and white-light conditions. Their adult plants displayed dwarf stature with dark green leaves and short petioles under long-day and short-day conditions.【Conclusion】In this study, we cloned BoPHYB gene, and evaluated it with AtPHYB in crop improvement. Taking on similar structures and functions with AtphyB, BophyB promotes seedling de-etiolation under red and white-light conditions and inhibits shade avoidance responses in mature plants under long-day and short-day conditions.

Key words: Brassica oleracea L., Arabidopsis thaliana, phytochrome B, de-etiolation, shade avoidance

[1]    杨丽梅, 方智远, 刘玉梅, 庄木, 张扬勇, 孙培田. “十一五” 我国甘蓝遗传育种研究进展. 中国蔬菜, 2011, 21: 1-10.
Yang L M, Fang Z Y, Liu Y M, Zhuang M, Zhang Y Y, Sun P T. Advances of research on cabbage genetics and breeding during “The eleventh five-year plan” in China. China Vegetables, 2011, 21: 1-10. (in Chinese)
[2]    Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). The Plant Journal, 2000, 22: 391-399.
[3]    Sawers R J, Linley P J, Farmer P R, Hanley N P, Costich D E, Terry M J, Brutnell T P. Elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiology, 2002, 130: 155-163.
[4]    Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annual Review of Plant Biology, 2008, 59: 281-311.
[5]    Li J G, Li G, Wang H Y, Deng X W. Phytochrome signaling mechanisms. The Arabidopsis Book, 2011, e0148. doi: 10.1199/tab.0148.
[6]    Quail P H. Phytochrome photosensory signalling networks. Nature Reviews Molecular Cell Biology, 2002, 3: 85-93.
[7]    詹克慧, 李志勇, 侯佩, 习雨琳, 肖阳, 孟凡华, 杨建平. 利用修饰光敏色素信号途径进行作物改良的可行性. 中国农业科学, 2012, 45(16): 3249-3255.
Zhan K H, Li Z Y, Hou P, Xi Y L, Xiao Y, Meng F H, Yang J P. A new strategy for crop improvement through modification of phytochrome signaling pathways. Scientia Agricultura Sinica, 2012, 45(16): 3249-3255. (in Chinese)
[8]    Briggs W R, Olney M A. Photoreceptors in plant photomorphogenesis to date. Five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiology, 2001, 125: 85-88.
[9]    MancinelliA L. The physiology of phytochrome action// Kendrick R E, Kronenberg G H M. Photomorphogenesis in Plants, 2nd ed.. Kluwer Academic Publishers, Netherlands, 1994: 211-269.
[10]   Alba R, Kelmenson P M, Cordonnier-Pratt M M,Pratt L H. The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms. Molecular Biology and Evolution, 2000, 17: 362-373.
[11]   Sharrock R A, Clack T, Goosey L. Differential activities of the Arabidopsis PHYB/D/E phytochromes in complementing PHYB mutant phenotypes. Plant Molecular Biology, 2003, 52: 135-142.
[12]   Ogihara Y, Shimizu H, Hasegawa K, Tsujimoto H, Sasakuma T. Chromosome assignment of four photosynthesis−related genes and their variability in wheat species. Theoretical and Applied Genetics, 1994, 88: 383-394.
[13]   Kulshreshtha R, Kumar N, Balyan H S, Gupta P K, Khurana P, Tyagi A K, Khurana J P. Structural characterization, expression analysis and evolution of the red/far-red sensing photoreceptor gene, phytochrome C (PHYC), localized on the ‘B’ genome of hexaploid wheat (Triticum aestivum L.). Planta, 2005, 221: 675-689.
[14]   王霞, 马燕斌, 宋梅芳, 孟凡华, 李秀全, 杨丽, 吴霞, 杨克诚, 杨建平. 小麦TaPHYA基因亚家族的克隆及表达分析. 作物学报, 2012, 38(8): 1354-1360.
Wang X, Ma Y B, Song M F, Meng F H, Li X Q, Yang L, Wu X, Yang K C, Yang J P. Isolation and expression patterns of TaPHYA gene subfamily in common wheat. Acta Agronomica Sinica, 2012, 38(8): 1354-1360. (in Chinese)
[15]   李壮, 马燕斌, 蔡应繁, 吴锁伟, 肖阳, 孟凡华, 付风铃, 黄玉碧, 杨建平. 小麦光敏色素基因TaPhyB3的克隆和表达分析. 作物学报, 2010, 36(5): 779-787.
Li Z, Ma Y B, Cai Y F, Wu S W, Xiao Y, Meng F H, Fu F L, Huang Y B, Yang J P. Cloning and expression analysis of TaPhyB3 in Triticum aestivumActa Agronomica Sinica, 2010, 36(5): 779-787. (in Chinese).
[16]   马燕斌, 李壮, 蔡应繁, 周朋, 肖阳, 黄玉碧, 付凤玲, 潘光堂, 杨克诚, 杨建平. 玉米2个光敏色素A基因的克隆、蛋白结构与光诱导表达模式. 中国农业科学, 2010, 43(10): 1985-1993.
Ma Y B, Li Z, Cai Y F, Zhou P, Xiao Y, Huang Y B, Fu F L, Pan G T, Yang K C, Yang J P. Isolation and primary analysis of protein structures and expression patterns responding to different light treatments of two phytochrome A genes in maize (Zea mays L.). Scientia Agricultura Sinica, 2010, 43(10): 1985-1993. (in Chinese)
[17]   Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Wang Z Y, Lassalle G, King G J, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin I A P, Batley J, Kim J S, Just J, Li J, Xu J, Deng J, Kim J A, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M, Jin M, Ramchiary N, Drou N, Berkman P J, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z. The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43: 1035-1039.
[18]   Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H,Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A,Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science,2014, 345: 950-953.
[19]   Rockwell N C, Su Y S, Lagarias J C. Phytochrome stucture and signaling mechanisms. Annual Reviews of Plant Biology, 2006, 57: 837-858.
[20]   Ma L G, Li J M, Qu L J, Hager J, Chen Z L, Zhao H Y, Deng X W. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. The Plant Cell, 2001, 13: 2589-2607.
[21]   Chen M, Schwab R, Chory J. Characterization of the requirements for localization of phytochrome B to nuclear bodies. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 14493-14498.
[22]   Abe H, Yamamoto K, Nagatani A, Furuya M. Characterization of green tissues pecific phytochrome isolated immunologically from pea seedlings. Plant and Cell Physiology, 1985, 26: 1387-1399.
[23]   Furuya M. Molecular properties and biogenesis of phytochrome I and II. Advances in Biophysics, 1989, 25: 133-167.
[24]   Tokuhisa J G, Daniels S M, Quail P H. Phytochrome in green tissue: Spectral and immunochemical evidence for two distinct molecular species of phytochrome in light-grown Avena sativa L.. Planta, 1985, 164: 321-332.
[25]   Childs K L, Miller F R, Cordonnier-Pratt M M, Pratt L H, Morgan P W, Mullet J E. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiology, 1997, 113: 611-619.
[26]   Hanumappa M, Pratt L H, Cordonnier-Pratt M M, Deitzer G F. A photoperiod-insensitive barley line contains a light-labile phytochrome B. Plant Physiology, 1999, 199: 1033-1040.
[27]   Casal J J. Shade avoidance. The Arabidopsis Book, 2012, 10:e0157. doi:10.1199/tab.0157.
[28]   Reed J W, Nagpal P, Poole D S, Furuya M, Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. The Plant Cell, 1993, 5: 147-157.
[29]   Song M F, Zhang S, Hou P, Shang H Z, Gu H K, Li J J, Xiao Y, Guo L, Su L, Gao J W, Yang J P. Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp. pekinensis) in Arabidopsis thaliana promotes seedling de?etiolation, dwarfing in mature plants, and delayed flowering. Plant Molecular Biology, 2015, 87: 633-643.
[30]   Zheng X, Wu S W, Zhai H Q, Zhou P, Song M F, Su L, Xi Y L, Li Z Y, Cai Y F, Meng F H, Yang L, Wang H Y, Yang J P. Arabidopsis Phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light. The Plant Cell, 2013, 25: 115-133.
[31]   Yang J P, Wang H Y. The central coiled-coil domain and carboxyl- terminal WD-repeat domain of Arabidopsis SPA1 are responsible for mediating repressing of light signaling. The Plant Journal-576., 2006, 47: 564
[32]   Clough S J, Bent A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16: 735-743.
[33]   Filiault D L, Wessinger C A, Dinneny J R, Lutes J, Borevitz J O, Weigel D, Chory J, Maloof J N. Amino acid polymorphisms in Arabidopsis phytochrome B cause differential responses to light. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 3157-3162.
[34]   Huang C L, Hung C Y, Chiang Y C, Hwang C C, Hsu T W, Huang C C, Hung K H, Tsai K C, Wang K H, Osada N, Schaal B A, Chiang T Y. Footprints of natural and artificial selection for photoperiod pathway genes in Oryza. The Plant Journal, 2012, 70: 769-782.
[35]   Sheehan M J, Farmer P R, Brutnell T P. Structure and expression of maize phytochrome family homeologs. Genetics, 2004, 167: 1395-1405.
[36]   White G M, Hamblin M T, Kresovich S. Molecular evolution of the phytochrome gene family in sorghum: changing rates of synonymous and replacement evolution. Molecular Biology and Evolution, 2004, 21: 716-723.
[37]   Su L, Hou P, Song M F, Zheng X, Guo L, Xiao Y, Yan L, Li W C, Yang J P. Synergistic and antagonistic action of phytochrome (phy) A and phyB during seedling de-etiolation in Arabidopsis thaliana. International Journal of Molecular Sciences, 2015, 16: 12199-12212.
[38]   Boylan M T, Quil P H. Oat phytochrome is biologically active in transgenic tomatoes. The Plant Cell, 1989, 1: 765-773.
[39]   Nagatani A, Kay S A, Deak M, Chua N H, Furuya M. Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88: 5207-5211.
[40]   Garg A K, Sawers R J, Wang H, Kim J K, Walker J M, Brutnell T P, Parthasarathy M V, Vierstra R D, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 2006, 223: 627-636.
[41]   Thiele A, Herold M, Lenk I, Quail P H, Gatz C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiology, 1999, 120: 73-81.
[1] TAO XingLin, HOU Dong, ZHU HuiXia, LIU MingXia, ZHANG JinWen, HU LiMin. Transcriptome and Cytological Researches on the Anther Abortion of a Thermo-Sensitive Genic Male Sterile Line GS-19 in Cauliflower [J]. Scientia Agricultura Sinica, 2017, 50(13): 2538-2552.
[2] YUAN Min, XING JiHong, WANG Li, GE WeiNa, GUO Di, ZHANG Lan. Interaction Between TFL1 and GRFs in Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2017, 50(10): 1772-1780.
[3] DU Hai, RAN Feng, LIU Jing, WEN Jing, MA Shan-shan, KE Yun-zhuo, SUN Li-ping, LI Jia-na. Genome-Wide Expression Analysis of Glucosinolate Biosynthetic Genes in Arabidopsis Across Diverse Tissues and Stresses Induction [J]. Scientia Agricultura Sinica, 2016, 49(15): 2879-2897.
[4] HAN Shuang, CHEN Su-mei, JIANG Jia-fu, FANG Wei-min, GUAN Zhi-yong, CHEN Fa-di. Hormone Levels and Gene Expression Analysis of Chrysanthemum Cultivar ‘Puma Sunny’ Under Low Light Intensity [J]. Scientia Agricultura Sinica, 2015, 48(2): 324-333.
[5] FAN Jin-tao, JIA Jiao, JIANG Chen-xi, WANG Guan-yu, ZHANG Jing, XING Ji-hong, DONG Jin-gao. Regional Analysis of Transcription Activity and Screening of Interaction Proteins of AtMYB73 Transcription Factor in Arabidopsis [J]. Scientia Agricultura Sinica, 2014, 47(23): 4754-4762.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!