Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (13): 2504-2512.doi: 10.3864/j.issn.0578-1752.2018.13.006

• PLANT PROTECTION • Previous Articles     Next Articles

Relationship between kynurenine 3-monooxygenase gene BcKMO and cAMP signaling pathway in Botrytis cinerea

YUAN XueMei, WANG Min, ZANG JinPing, CAO HongZhe, ZHANG Kang, ZHANG Jing, XING JiHong, DONG JinGao   

  1. College of Life Sciences, Hebei Agricultural University/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/Mycotoxin and Molecular Plant Pathology Laboratory of Hebei Agricultural University, Baoding 071000, Hebei
  • Received:2018-01-23 Online:2018-07-01 Published:2018-07-01

Abstract: 【Objective】The objective of this study is to analyze the relationship between BcKMO and cAMP signaling pathway in Botrytis cinerea, and to lay a foundation for clarifying the molecular mechanism of the BcKMO in growth, development and pathogenicity in B. cinerea. 【Method】 A specific inhibitor SQ22536 of cAMP signaling pathway was used to detect the sensitivity of the wild-type strain BC22, the BcKMO T-DNA insertion mutant BCG183, and the BcKMO complementing mutant BCG183/BcKMO. The cAMP was extracted from the wild-type strain BC22, the BcKMO T-DNA insertion mutant BCG183, and the BcKMO complementing mutant BCG183/BcKMO and detected by using HPLC assay, respectively. Real-time PCR technology was used to detect expression pattern of the BcKMO,the PKA catalytic subunit gene pka1 and pka2, the PKA regulatory subunit gene pkaR, G-protein Gα subunits gene bcg2 and bcg3 in different developmental stages, tissues and culture conditions of BC22. The expression level of cAMP signaling pathway key genes pka1, pka2, pkaR, bcg2, and bcg3 in mutants BCG183 and BCG183/BcKMO was detected by using real-time PCR technology. The expression level of BcKMO in RNAi mutantsof cAMP signaling pathway key genes pka1, pka2, pkaR, bcg2, and bcg3 was detected by using real-time PCR technology.【Result】The BcKMO T-DNA insertion mutant BCG183 was insensitive to the cAMP signaling pathway specific inhibitor SQ22536. The inhibition rate of the cAMP signaling pathway specific inhibitor SQ22536 to mutant BCG183 was significantly lower than the wild-type strain BC22 and the BcKMO complementing mutant BCG183/BcKMO. The cAMP content of the mutant BCG183 was significantly lower than that of the wild-type strain BC22 and the mutant BCG183/BcKMO. The expression pattern of BcKMO, the PKA catalytic subunit gene pka1, G-protein Gα subunits gene bcg2 and bcg3 was basically the same, and the expression level of BcKMO, pka1, bcg2, and bcg3 was higher in 7th day of mycelia and sclerotia of BC22. In addition,the expression level of BcKMO and the cAMP signaling pathway key genes pka1, bcg2, pkaR, bcg2, and bcg3 was higher in BC22 cultured on medium with fructose. The expression level of cAMP signaling pathway key genes pka1, pka2, pkaR, bcg2, bcg3 in mutant BCG183 was significantly higher than that of strains BC22 and BCG183/BcKMO. The BcKMO expression level in the RNAi mutants of pka1and bcg2 was obviously higher than that of BC22, the BcKMO expression level in the RNAi mutants of pka2, pkaR, and bcg2 was obviously lower than that of BC22.【Conclusion】The BcKMO negatively regulated the expression of pka1, pka2, pkaR, bcg2, and bcg3. The pka1 and bcg2 negatively regulated the BcKMO expression, and the pka2, pkaR, and bcg3 positively regulated the BcKMO expression.

Key words: Botrytis cinerea, BcKMO, cAMP signaling pathway

[1]    Williamson B, Tudzynski B, Tudzynski P, van Kan J A. Botrytis cinerea: The cause of grey mould disease. Molecular Plant Pathology, 2007, 8(5): 561-580.
[2]    Elad Y, Williamson B, Tudzynski P, Delen N. Botrytis spp., and diseases they cause in agricultural systems-an introduction// Botrytis: Biology, Pathology and Control. Dordrecht Netherlands: Kluwer Academic Publishers, 2007: 1-8.
[3]    van Kan J A. Licensed to kill: The lifestyle of a necrotrophic plant pathogen. Trends in Plant Science, 2006, 11(5): 247-253.
[4]    Rosslenbroich H J, Stuebler D. Botrytis cinerea-history of chemical control and novel fungicides for its management. Crop Protection, 2000, 19(8/10): 557-561.
[5]    Tudzynski P, Kokkelink L. Botrytis cinerea: Molecular aspects of a necrotrophic life style. Plant Relationships, 2009, 5: 29-50.
[6]    Collado I G, Sanchez A J, Hanson J R. Fungal terpene metabolites: biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea. Natural Product Reports,2007, 24: 674-686.
[7]    Fillinger S, Amselem J, Artiguenave F, Billault A, Choquer M, Couloux A, Cuomo C, Dickman M, Fournier E, Gioti A, Giraud C, Kodira C, Kohn L, Legeai F, Levis C, Mauceli E, Pommier C, Pradier J M, Que´villon E, Rollins J, Se´gurens B, Simon A, Viaud M, Weissenbach J, Wincker P, Lebrun M H. The genome projects of the plant pathogenic fungi Botrytis cinerea and Sclerotinia sclerotiorum//Jeandet P, Clement C, Conreux A. Macromolecules of Grape and Wines, 2007: 125-133.
[8]    Schumacher J, Kokkelink L, Huesmann C, Jimenez- Teja D, Collado I G, Barakat R, Tudzynski P, Tudzynski B. The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea. Molecular Plant-Microbe Interactions, 2008, 21(11): 1443-1459.
[10]   Schumacher J, Viaud M, Simon A, Tudzynski B. The Galpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Molecular Microbiology, 2008, 67(5): 1027-1050.
[11]   Döhlemann G, Berndt P, Hahn M. Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Molecular Microbiology, 2006, 59(3): 821-835.
[12]   Gronover C S, Kasulke D, TudzynskiP, Tudzynski B. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Molecular Plant-Microbe Interactions, 2001, 14(11): 1293-1302.
[13]   Klimpel A, Gronover C S, Williamson B, Stewart J A, Tudzynski B. The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Molecular Plant Pathology, 2002, 3(6): 439-450.
[14]   Choquer M, Fournier E, Kunz C, Levis C, Pradier J M, Simon A, Viaud M. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters, 2007, 277(1): 1-10.
[15]   张玉净, 郝志敏, 郑蒙, 张金林, 董金皋. 灰葡萄孢产孢缺陷菌株的遗传分析. 华北农学报, 2011, 26(3): 86-89.
Zhang Y J, Hao Z M, Zheng M, Zhang J L, Dong J G. Genetic analysis of sporulation defective in Botrytis cinerea. Acta Agriculturae Boreali-Sinica, 2011, 26(3): 86-89. (in Chinese)
[16] 李培芬, 赵福鑫, 董丽萍, 郑会欣, 赵斌, 张靖, 司贺龙, 邢继红, 韩建民, 董金皋. 灰葡萄孢BcKMO在病菌生长、发育和致病过程中的功能. 中国农业科学, 2014, 47(15): 2971-2979.
Li P F, Zhao F X, Dong L P, Zheng H X, Zhao B, Zhang J, Si H L, Xing J H, Han J M, Dong J G. Function analysis of BcKMO gene in growth, development and pathogenicity of Botrytis cinerea. Scientia Agricultura Sinica, 2014, 47(15): 2971-2979. (in Chinese)
[17]   李培芬, 赵福鑫, 董丽萍, 郑会欣, 赵斌, 韩建民, 邢继红, 董金 皋. 灰葡萄孢犬尿氨酸单氧酶基因BcKMO调控病菌致病力的机制分析. 中国农业科学, 2014, 47(16): 3167-3173.
Li P F, Zhao F X, Dong L P, Zheng H X, Zhao B, Han J M, Xing J H, Dong J G. Mechanism analysis of kynurenine 3-monooxygenase gene BcKMO in regulation of pathogenicity in Botrytis cinerea. Scientia Agricultura Sinica, 2014, 47(16): 3167-3173. (in Chinese)
[18]   Ni M, Rierson S, Seo J A, Yu J H. The pkaB gene encoding the secondary protein kinase A catalytic subunit has a synthetic lethal interaction with PkaA and plays overlapping and opposite roles in Aspergillus nidulans. Eukaryotic Cell, 2005, 4(8): 1465-1476.
[19]   Takano Y, Komeda K, Kojima K, Okuno T. Proper regulation of cyclic AMP-dependent protein kinase is required for growth, conidiation, and appressorium function in the anthracnose fungus Colletotrichum lagenarium. Molecular Plant-Microbe Interactions, 2001, 14(10): 1149-1157.
[20]   Fillinger S, Chaveroche M K, Shimizu K, Keller N, d’Enfert C. cAMP and Ras signaling independently control spore germination in the filamentous fungus Aspergillus nidulans. Molecular Microbiology,2002, 44(4): 1001-1016.
[21]   Liebmann B, Gattung S, Jahn B, Brakhage A A. cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Molecular Genetics and Genomics, 2003, 269(3): 420-435.
[22]   Yamauchi J, Takayanagi N, Komeda K, Takano Y, Okuno T. cAMP-pKA signaling regulates multiple steps of fungal infection cooperatively with Cmk1 MAP kinase in Colletotrichum lagenarium. Molecular Plant-Microbe Interactions, 2004, 17(12): 1355-1365.
[23]   Zhao W, Panepinto J C, Fortwendel J R, Fox L, Oliver B G, Askew D S, Rhodes J C. Deletion of the regulatory subunit of protein kinase A in Aspergillus fumigatus alters morphology, sensitivity to oxidative damage, and virulence. Infection and Immunity, 2006, 74(8): 4865-4874.
[24]   Roze L V, Beaudry R M, Keller N P, Linz J E. Regulation of aflatoxin synthesis by FadA/cAMP/protein kinase A signaling in Aspergillus parasiticus. Mycopathologia, 2004, 158(2): 219-232.
[25]   Shimizu K, Hicks J K, Huang T P, Keller N P. Pka, Ras and RGS protein interactions regulate activity of AflR, a Zn(II)2Cys6 transcription factor in Aspergillus nidulans. Genetics, 2003, 165(3): 1095-1104.
[26]   Bahn Y S, Xue C, Idnurm A, Rutherford J C, Heitman J, Cardenas M E. Sensing the environment: Lessons from fungi. Nature Reviews Microbiology, 2007, 5: 57-69.
[27]   Thevelein J M, Gelade R, Holsbeeks I, Lagatie O, Popova Y, Rolland F, Stolz F, Van de Velde S, Van Dijck P, Vandormael P, Van Nuland A, Van Roey K, Van Zeebroeck G, Yan B. Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast. Biochemical Society Transactions, 2005, 33(1): 253-256.
[28]   Jurick W M, Rollins J A. Deletion of the adenylate cyclase (Sac1) gene affects multiple developmental pathways and pathogenicity in Sclerotinia sclerotiorum. Fungal Genetics and Biology44(6): 521-530.,2007,
[29]   Mehrabi R, Kema G H. Protein kinase A of the ascomycete pathogen Mycosphaerella graminicola regulate asexual fructification, filamentation, melanization, and osmosensing. Molecular Plant Pathology,2006, 7(6): 565-577.
[1] WEI XinYan, HUANG YuanYuan, HUANG YaLi, DU KeJiu. Antagonism of Bacillus methylotrophicus Strain BH21 to Botrytis cinerea [J]. Scientia Agricultura Sinica, 2018, 51(5): 883-892.
[2] GAO CuiZhu, YANG HongLing, HUANGXIA YuQi, HUANG JunBin, LI GuoQing, ZHENG Lu. Occurrence of Grey Mould Disease in Greenhouse-Grown Strawberry and Its Correlations with Epidemic Factors in Hubei Province [J]. Scientia Agricultura Sinica, 2017, 50(9): 1617-1623.
[3] CUI KaiDi, HUANG XuePing, HE LeiMing, ZHAI YongBiao, MU Wei, LIU Feng. The Inhibition Effect of Microbial Volatile Compound Benzothiazole on Botrytis cinerea [J]. Scientia Agricultura Sinica, 2017, 50(19): 3714-3722.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!