Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (8): 1682-1686.doi: 10.3864/j.issn.0578-1752.2013.08.018

• STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

Simultaneous Detection of Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae Using Multiplex PCR

 WEI  Shuang, XIAN  Yu-Yin, ZHAO  Hui, WU  Xi-Yang   

  1. 1.Department of Food Science and Engineering, Ji’nan University, Guangzhou 510632
    2.Hubei Entry-Exit Inspection and Quarantine Bureau Inspection and Quarantine Technology Center, Wuhan 430022
    3.Food Safety and Health Emergency Technical Research Center of Guangdong Province, Guangzhou 510632
  • Received:2012-10-26 Online:2013-04-15 Published:2013-01-16

Abstract: 【Objective】The objective of this study is to develop a multiplex PCR assay that can simultaneously detect Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae in the presence of an internal amplification control (IAC).【Method】Species-specific PCR primers were designed based on gyrB gene for Vibrio alginolyticus, collagenase gene for Vibrio parahaemolyticus, vvhA gene for Vibrio vulnificus and ompW gene for Vibrio cholerae, 16S rRNA gene of bacteria as IAC primers was used to indicate false-negative results. Multiple PCR method was developed after optimization reaction condition. 【Result】The multiple PCR method was proved to be rapid, high-throughput, sensitive and specific and the existence of IAC could successfully eliminate false-negative results. The multiplex PCR was validated with 69 suspicious Vibrio strains and the results were consistent with the physiological and biochemical experiments.【Conclusion】The multiple PCR method is specific, stable and reliable for the detection of Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae.

Key words: Vibrio , detection , multiple PCR

[1]Toranzo A E, Magarinos B, Romalde J L. A review of the main bacterial fish diseases in mariculture systems. Aquaculture, 2005, 246(1-4): 37-61.

[2]Baffone W, Citterio B, Vittoria E, Casaroli A, Pianetti A, Campana R, Bruscolini F. Determination of several potential virulence factors in Vibrio spp. Isolated from sea water. Food Microbiology, 2001, 18(5): 479-488.

[3]Zhang X H, Austin B. Haemolysins in Vibrio species. Journal of Applied Microbiology, 2005, 98(5): 1011-1019.

[4]Su Y C, Liu C C. Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiology, 2007, 24(6): 549-558.

[5]Schmidt U, Chmel H, Cobbs C. Vibrio alginolyticus infections in humans. Journal of Clinical Microbiology, 1979, 10(5): 666-668.

[6]Vantarakis A, Komninou G, Venieri D, Papapetropoulou. Development of a multiplex PCR detection of Salmonella spp. and Shigella spp. in mussels. Letters in Applied Microbiology, 2000, 31(2): 105-109.

[7]Vannuffel P, Gigi J, Ezzedine H, Vandercam B, Delmee M, Wauters G, Gala J L. Specific detection of methicillin-resistant Staphylococcus species by multiplex PCR. Journal of Clinical Microbiology, 1995, 33(11): 2864-2867.

[8]Kong R Y C, Lee S K Y, Law W F, Law S H W, Wu R S S. Rapid detection of six types of bacterial pathogens in mariner waters by multiplex PCR. Water Research, 2002, 36(11): 2802-2812.

[9]Fratamico P M, Sackitey S K, Wiedmann M, Deng M Y. Detection of Escherichia coli O157:H7 by multiplex PCR. Journal of Clinical Microbiology, 1995, 33(8): 2188-2191.

[10]Neogi S B, Chowdhury N, Asakura M, Hinenoya A, Haldar S, Saidi S M, Kogure K, Lara R J, Yamasaki S. A highly sensitive and specific multiplex PCR assay for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus. Letters in Applied Microbiology, 2010, 51(3): 293-300.

[11]Haldar S, Neogi S B, Kogure K, Chatterjee S, Chowdhury N, Hinenoya A, Asakura M, Yamasaki S. Development of a haemolysin gene-based multiplex PCR for simultaneous detection of Vibrio campbellii, Vibrio harveyi and Vibrio parahaemolyticus. Letters in Applied Microbiology, 2010, 50(2): 146-152.

[12]Abualsoud W, Radstrom P. Purification and characterization of PCR-inhibitory components in blood cells. Journal of Clinical Microbiology, 2001, 39(2): 485-493.

[13]Hoorfar J, Malomy B, Abdulmawjood A, Cook N, Wagner M, Fach P. Practical considerations in design of internal amplification controls for diagnostic PCR assays. Journal of Clinical Microbiology, 2004, 42(5): 1863-1868.

[14]Nordstrom J L, Vickery M C L, Blackstone G M, Murray S L, Depaola A. Development of a multoplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Applied and Environmental Micobiology, 2007, 73(18): 5840-5847.

[15]Nandi B, Nandy R K, Mukhopadhyay S, Nair G B, Shimada T, Ghose A C. Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein ompW. Journal of Clinical Microbiology, 2000, 38(11): 4145-4151.

[16]Zhou S, Hou Z, Li N, Qin Q. Development of a SYBR GreenⅠreal-time PCR for quantitative of Vibrio alginolyticus in seawater and seafood. Journal of Applied Microbiology, 2007, 103(5): 1897-1906.

[17]Pinto A D, Ciccarese G, Tantillo G, Catalano D, Forte V T. A collagenase-targeted multiplex PCR assay for identification of Vibrio alginolyticus, Vibrio cholerae, and Vibrio parahaemolyticus. Journal of Food Protection, 2005, 68(1): 150-153.

[18]Panicker G, Myers M L, Bej A K. Raped detection of Vibrio vulnificus in shellfish and gulf of mexico water by real-time PCR. Applied and Environmental Microbiology, 2004, 70(1): 498-507.

[19]Izumiya H, Matsumoto K, Yahiro S, Lee J, Morita M, Yamamoto S, Arakawa E, Ohnishi M. Multiplex PCR assay for identification of three major pathogenic Vibrio spp., Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Molecular and Cellular Probes, 2011, 25(4): 174-176.

[20]Kim Y B, Okuda J, Matsumoto C, Takahashi N, Hashimoto S, Nishibuchi M. Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene. Journal of Clinical Microbiology, 1999, 37(4): 1173-1177.

[21]Venkatesmwaran K, Dohmoto N, Harayama S. Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp. Applied and Environmental Microbiology, 1998, 64(2): 681-687.

[22]Lee C Y, Chen C H. Sequence of a cloned pR72H fragment and its use for detection of Vibrio parahaemolyticus in shellfish with the PCR. Applied and Environmental Microbiology, 1995, 61(4): 1311-1317.

[23]Blackstone G M, Nordstrom J L, Vickery M C L, Bowen M D, Meyer R F, Depala A. Detection of pathogenic Vibrio parahaemolyticus in oyster enrichments by real time PCR. Journal of Microbiological Methods, 2003, 53(2): 149-155.

[24]Pascual J, Macian M C, Arahal D R, Garay E, Pujalte M J. Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(1): 154-165.

[25]吕淑霞, 祝儒刚, 刘月萍, 张喆, 胡英. 扩增内标在副溶血弧菌多重PCR检测方法中的应用. 沈阳农业大学学报, 2010, 41(6): 701-705.

Lü S X, Zhu R G, Liu Y P, Zhang Z, Hu Y. Multiplex PCR assay for the detection of pathogenic Vibrio parahaemolyticus in seafood in the presence of internal amplification control. Journal of Shenyang Agricultural University, 2010, 41(6): 701-705.(in Chinese)
[1] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[2] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[3] CUI JiangKuan,REN HaoHao,CAO MengYuan,CHEN KunYuan,ZHOU Bo,JIANG ShiJun,TANG JiHua. SCAR-PCR Rapid Molecular Detection Technology of Heterodera zeae [J]. Scientia Agricultura Sinica, 2022, 55(17): 3334-3342.
[4] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[5] LI ZhenXi,LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing. Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification [J]. Scientia Agricultura Sinica, 2022, 55(1): 74-84.
[6] DUAN Yu,XU JianJian,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Detection of Citrus Leaf Blotch Virus by Reverse Transcription- Recombinase Polymerase Amplification (RT-RPA) [J]. Scientia Agricultura Sinica, 2021, 54(9): 1904-1912.
[7] Xue BAI,Teng HUI,ZhenYu WANG,YunGang CAO,DeQuan ZHANG. Determination of 5 Nitropolycyclic Aromatic Hydrocarbons in Roasted Meat Products by High Performance Liquid Chromatography- Fluorescence Detection [J]. Scientia Agricultura Sinica, 2021, 54(5): 1055-1062.
[8] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[9] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[10] MA ZhiMin,XU JianJian,DUAN Yu,WANG ChunQing,SU Yue,ZHANG Qi,BIN Yu,ZHOU ChangYong,SONG Zhen. Establishment of RT-RPA for Citrus Yellow Vein Clearing Virus (CYVCV) Detection [J]. Scientia Agricultura Sinica, 2021, 54(15): 3241-3249.
[11] CHEN PengFei,MA Xiao. Research Status and Trends of Automatic Detection of Crop Planting Rows [J]. Scientia Agricultura Sinica, 2021, 54(13): 2737-2745.
[12] SUN XiaoFang,LIU Min,PAN TingMin,GONG GuoShu. Mating Type and Fertility of Cochliobolus heterostrophus Causing Southern Corn Leaf Blight in Sichuan Province [J]. Scientia Agricultura Sinica, 2021, 54(12): 2547-2558.
[13] HUI YuanYuan,PENG HaiShuai,WANG BiNi,ZHANG FuXin,LIU YuFang,JIA Rong,REN Rong. Research Progress of Food-Borne Pathogen Detection Based on Electrochemical and Optical Aptasensors [J]. Scientia Agricultura Sinica, 2021, 54(11): 2419-2433.
[14] ZHANG QingAn,CHEN BoYu. Research Progress of Four Sulfur Compounds Related to Red Wine Flavor [J]. Scientia Agricultura Sinica, 2020, 53(5): 1029-1045.
[15] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!