Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (3): 630-638.doi: 10.3864/j.issn.0578-1752.2013.03.020

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

mRNA Expression Level and Promoter Methylation of DDX4 Gene in Testes of Yak and Cattle-Yak

 ZHOU  Yang, LUO  Hua, LI  Bo-Jiang, JIA  Chao, XIE  Zhuang, ZHAO  Xing-Bo, ZHONG  Jin-Cheng, LI  Qi-Fa   

  1. 1.College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095
    2.College of Animal Science and Technology, China Agricultural University, Beijing 100193
    3.College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041
  • Received:2012-07-09 Online:2013-02-01 Published:2012-08-15

Abstract: 【Objective】The study was aimed to investigate the expression levels and promoter methylation status of DDX4 gene in the testes of yak and cattle-yak. 【Method】Real-time PCR was employed to examine the expression levels in the testes of yak and cattle-yak. Clone sequencing was applied to acquire the promoter sequences of DDX4 gene of yak. The promoter methylation status of DDX4 gene in the testes of yak and cattle-yak was analyzed by using sodium bisulfite sequencing.【Result】The mRNA expression level of DDX4 gene in the testis of yak was significantly higher than that of cattle-yak (P<0.01). The length of the promoter sequences of the DDX4 gene was 1 370 bp, which included a core promoter (251 bp) and a CpG island (918 bp). The promoter methylation level of DDX4 gene in the testes of cattle-yaks (86.5%) was significantly higher than that in yak (67.0%) (P<0.01). 【Conclusion】Results of the study showed that the testicular expression level of DDX4 might be involved in cattle-yak male sterility, and the promoter hypermethylation was correlated to the lower expression of DDX4 in the testes of cattle-yak.

Key words: yak , cattle-yak , DDX4 gene , expression level , methylation

[1]Lee H Y, Chou J Y, Cheong L, Chang N H, Yang S Y, Leu J Y. Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species. Cell, 2008, 135(6): 1065-1073.

[2]Douglas K C, Halbert N D, Kolenda C, Childers C, Hunter D L, Derr J N. Complete mitochondrial DNA sequence analysis of Bison bison and bison-cattle hybrids: function and phylogeny. Mitochondrion, 2011, 11(1): 166-175.

[3]Zhang Q B, Li J H, Li Q F, Li X F, Liu Z S, Song D W, Xie Z. Cloning and characterization of the gene encoding the bovine BOULE protein. Molecular Genetics and Genomics, 2009, 281(1): 67-75.

[4]Liu Z S, Li Q F, Pan Z X, Qu X G, Zhang C X, Xie Z. Comparative analysis on mRNA expression level and methylation status of DAZL gene between cattle-yaks and their parents. Animal Reproduction Science, 2011, 126(3/4): 258-264.

[5]潘增祥, 刘振山, 李隐侠, 于莎莉, 李明桂, 谢庄, 李齐发. 犏牛及其亲本睾丸组织中印记基因SNRPN DMR甲基化与mRNA表达差异研究. 中国农业科学, 2010, 43(22): 4709-4716.

Pan Z X, Liu Z S, Li Y X, Yu S L, Li M G, Li Q F , Xie Z. Difference of SNRPN methylation status and its mRNA expression in testes between cattle-yaks and their parents. Scientia Agricultura Sinica, 2010, 43(22): 4709-4716. (in Chinese)

[6]Schupbach T, Wieschaus E. Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Developmental Biology, 1986, 113(2): 443-448.

[7]Hickford D E, Frankenberg S, Pask A J, Shaw G, Renfree M B. DDX4 (VASA) is conserved in germ cell development in marsupials and monotremes. Biology of Reproduction, 2011, 85(4): 733-743.

[8]Reynolds N, Collier B, Maratou K, Bingham V, Speed R M, Taggart M, Semple C A, Gray N K, Cooke H J. Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Human Molecular Genetics, 2005, 14(24): 3899-3909.

[9]Gustafson E A, Yajima M, Juliano C E, Wessel G M. Post-translational regulation by gustavus contributes to selective Vasa protein accumulation in multipotent cells during embryogenesis. Developmental Biology, 2011, 349(2): 440-450.

[10]Soultanas P, Dillingham M S, Velankar S S, Wigley D B. DNA binding mediates conformational changes and metal ion coordination in the active site of PcrA helicase. Journal of Molecular Biology, 1999, 290(1): 137-148.

[11]Fujiwara Y, Komiya T, Kawabata H, Sato M, Fujimoto H, Furusawa M, Noce T. Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(25): 12258-12262.

[12]Anderson R A, Fulton N, Cowan G, Coutts S, Saunders P T. Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis. BMC Developmental Biology, 2007, 7: 136-135.

[13]Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M, Noce T. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mechanisms of Development, 2000, 93(1/2): 139-149.

[14]Singleton M R, Dillingham M S, Wigley D B. Structure and mechanism of helicases and nucleic acid translocases. Annual Review of Biochemistry, 2007, 76: 23-50.

[15]Tanaka S S. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes and Development, 2000, 14(7): 841-853.

[16]李贤, 李齐发, 赵兴波, 徐洪涛, 顾垚, 朱翔, 谢庄, 刘红林. 牦牛和犏牛Dmc1基因序列分析及睾丸组织转录水平研究. 中国农业科学, 2010, 43(15): 3221-3229.

Li X, Li Q F, Zhao X B, Xu H T, Gu Y, Zhu X, Xie Z, Liu H L. Sequence analysis and study on the expression level of Dmc1 mRNA in yak and cattle-yak testis. Scientia Agricultura Sinica, 2010, 43(15): 3221-3229. (in Chinese)

[17]Wang S, Pan Z, Zhang Q, Xie Z, Liu H, Li Q. Differential mRNA expression and promoter methylation status of SYCP3 gene in testes of yaks and cattle-yaks. Reproduction in Domestic Animals, 2012, 47(3): 455-462.

[18]Liu Z S, Li Q F, Zhang Q B, Qu X G, Dong L Y, Yangzon Q B, Xie Z, Liu H L. Analysis of IGF2 mRNA expression and its methylation status between cattle yaks and their parents. Progress in Nature Science, 2009, 19: 1063-1069.

[19]李明桂, 徐洪涛, 李隐侠, 于莎莉, 赵兴波, 潘增祥, 朱翔, 谢庄, 李齐发. b-Boule基因5′调控序列的克隆与睾丸组织DMR甲基化分析. 中国农业科学, 2011, 44(18): 3859-3867.

Li M G, Xu H T, Li Y X, Yu S L, Zhao X B, Pan Z X, Zhu X, Xie Z, Li Q F. Cloning and testicular DMR methylation analysis of b-boule gene 5′-flanking regulation regions. Scientia Agricultura Sinica, 2011, 44(18): 3859-3867. (in Chinese)

[20]Castrillon D H, Quade B J, Wang T Y, Quigley C, Crum C P. The human VASA gene is specifically expressed in the germ cell lineage. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(17): 9585-9590.

[21]Onohara Y, Fujiwara T, Yasukochi T, Himeno M, Yokota S. Localization of mouse vasa homolog protein in chromatoid body and related nuage structures of mammalian spermatogenic cells during spermatogenesis. Histochemistry and Cell Biology, 2010, 133(6): 627-639.

[22]Medrano J V, Ramathal C, Nguyen H N, Simon C, Reijo P R A. Divergent RNA-binding proteins, DAZL and VASA, induce meiotic progression in human germ cells derived in vitro. Stem Cells, 2012, 30(3): 441-451.

[23]Cordin O, Banroques J, Tanner N K, Linder P. The DEAD-box protein family of RNA helicases. Gene, 2006, 367: 17-37.

[24]Weston A, Sommerville J. Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Research, 2006, 34(10): 3082-3094.

[25]Megosh H B, Cox D N, Campbell C, Lin H. The role of PIWI and the miRNA machinery in Drosophila germline determination. Current Biology, 2006, 16(19): 1884-1894.

[26]Gustafson E A, Wessel G M. Vasa genes: emerging roles in the germ line and in multipotent cells. Bioessays, 2010, 32(7): 626-637.

[27]Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Takamatsu K, Chuma S, Kojima-Kita K, Shiromoto Y, Asada N, Toyoda A, Fujiyama A, Totoki Y, Shibata T, Kimura T, Nakatsuji N, Noce T, Sasaki H, Nakano T. MVH in piRNA processing and gene silencing of retrotransposons. Genes and Development, 2010, 24(9): 887-892.

[28]Ando M, Yamaguchi K, Chiba K, Miyake H, Fujisawa M. Expression of VASA mRNA in testis as a significant predictor of sperm recovery by microdissection testicular sperm extraction in patient with non-obstructive azoospermia. Journal of Andrology, 2012, 33(4): 711-716.

[29]Guo X, Gui Y T, Tang A F, Lu L H, Gao X, Cai Z M. Differential expression of VASA gene in ejaculated spermatozoa from normozoospermic men and patients with oligozoospermia. Asian Journal of Andrology, 2007, 9(3): 339-344.

[30]Medrano J V, Marqués-Marí A I, Aguilar C E, Riboldi M, Garrido N, Martínez-Romero A, O’Connor E, Gil-Salom M, Simón C. Comparative analysis of the germ cell markers c-KIT, SSEA-1 and VASA in testicular biopsies from secretory and obstructive azoospermias. Molecular Human Reproduction, 2010, 16(11): 811-817.

[31]Weber M, Hellmann I, Stadler M B, Ramos L, Pääbo S, Rebhan M, Schübeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics, 2007, 39(4): 457-466.

[32]Bauer A P, Leikam D, Krinner S, Notka F, Ludwig C, Längst G, Wagner R. The impact of intragenic CpG content on gene expression. Nucleic Acids Research, 2010, 38(12): 3891-3908.

[33]Kitamura E, Igarashi J, Morohashi A, Hida N, Oinuma T, Nemoto N, Song F, Ghosh S, Held W A, Yoshida-Noro C, Nagase H. Analysis of tissue-specific differentially methylated regions (TDMs) in humans. Genomics, 2007, 89(3): 326-337.

[34]Sugimoto K, Koh E, Sin H S, Maeda Y, Narimoto K, Izumi K, Kobori Y, Kitamura E, Nagase H, Yoshida A, Namiki M. Tissue-specific differentially methylated regions of the human VASA gene are potentially associated with maturation arrest phenotype in the testis. Journal of Human Genetics, 2009, 54(8): 450-456.

[35]Lin Z Y, Imamura M, Sano C, Nakajima R, Suzuki T, Yamadera R, Takehara Y, Okano H J, Sasaki E, Okano H. Molecular signatures to define spermatogenic cells in common marmoset (Callithrix jacchus). Reproduction, 2012, 143(5): 597-609.
[1] WANG JiaMin,SHI JiaChen,MA FangFang,CAI Yong,QIAO ZiLin. Effects of Soy Isoflavones on the Proliferation and Apoptosis of Yak Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(8): 1667-1675.
[2] RAN HongBiao,ZHAO LiLing,WANG Hui,CHAI ZhiXin,WANG JiKun,WANG JiaBo,WU ZhiJuan,ZHONG JinCheng. Effects of lncFAM200B on the Lipid Deposition in Intramuscular Preadipocytes of Yak [J]. Scientia Agricultura Sinica, 2022, 55(13): 2654-2666.
[3] LI XueRu,SHI XiXiong,WANG JianZhong,ZHANG PanGao,TIAN Zhu,HAN Ling. Effect of Nitric Oxide Synthetase Inhibitor on Yak Meat Quality During Post-Mortem Aging [J]. Scientia Agricultura Sinica, 2020, 53(8): 1617-1626.
[4] MIAO JianJun,PENG ZhongLi,GAO YanHua,BAI Xue,XIE XinTing. Effects of Dietary Small Peptides on Production Performance and Expression of PepT1 mRNA in Digestive Tract of Fattening Yaks [J]. Scientia Agricultura Sinica, 2020, 53(23): 4950-4960.
[5] PAN YangYang,WANG Meng,RUI Xian,WANG LiBin,HE HongHong,WANG JingLei,MA Rui,XU GengQuan,CUI Yan,FAN JiangFeng,YU SiJiu. RNA-Binding Motif Protein 3(RBM3) Expression is Regulated by Insulin-Like Growth Factor (IGF-1) for Protecting Yak (Bos grunniens) Cumulus Cells from Apoptosis During Hypothermia Stress [J]. Scientia Agricultura Sinica, 2020, 53(11): 2285-2296.
[6] XiangYue HUANG,XianRong XIONG,Jie HAN,XianYing YANG,Yan WANG,Bin WANG,Jian LI. Expression Pattern of KDM1A in the Development of Yak Follicles [J]. Scientia Agricultura Sinica, 2019, 52(24): 4624-4631.
[7] ZI XiangDong, LUO Bin, XIA Wei, ZHENG YuCai, XIONG XianRong, LI Jian, ZHONG JinCheng, ZHU JiangJiang, ZHANG ZhengFan. Transcriptomic Analysis of IVF Embryonic Development in the Yak (Bos grunniens) Via RNA-Seq [J]. Scientia Agricultura Sinica, 2018, 51(8): 1577-1589.
[8] Tao ZHANG, FuHui SI, YuXi ZHANG, ShuPeng GAI. Effect of Exogenous Gibberellin on DNA Methylation Level and Expression of Related Enzyme Genes in Tree Peony Floral Buds [J]. Scientia Agricultura Sinica, 2018, 51(18): 3561-3569.
[9] GUO BoLi, WEI YiMin, WEI Shuai, SUN QianQian, ZHANG Lei, SHI ZhenQiang. The Characters and Influence Factors of Stable Isotope Fingerprints in Yak Muscle [J]. Scientia Agricultura Sinica, 2018, 51(12): 2391-2397.
[10] CHEN ChaoXi, HE DongMei, TANG Cheng. Vicissitude of Drug Resistance and Integron-Carrying of Escherichia coli Isolated from Yak Between 2009 and 2016 in Northwest Sichuan Plateau [J]. Scientia Agricultura Sinica, 2017, 50(9): 1705-1713.
[11] YANG QiYue, HUANG Yong, CHEN YaBing, LIU LuoChuan, LI Jian, LAN DaoLiang. Screening of Optimal DNA Extraction Methods and the Bacterial Community Composition of Yak Rumen Revealed by High 16S rRNA Throughput Sequencing [J]. Scientia Agricultura Sinica, 2017, 50(5): 932-941.
[12] GAO XiaoLi, HU Jiang, GUO ShuZhen, SHI BinGang, XIE JianPeng, LUO YuZhu, WANG JiQing, MU YongJuan. Polymorphisms of DGAT1 Gene and Their Association with Milk Quality Traits in Yak [J]. Scientia Agricultura Sinica, 2017, 50(16): 3215-3225.
[13] SHI Xian, XIONG XianRong, LAN DaoLiang, CHEN WeiMing, HU JiaJia, CAI WenYi, LI Jian. Cloning and Expression Analysis of CCND2 Gene in Yak Ovaries During Different Periods of Estrus [J]. Scientia Agricultura Sinica, 2017, 50(13): 2604-2613.
[14] TAN YongAn, XIAO LiuBin, HAO DeJun, ZHAO Jing, SUN Yang, BAI LiXin. Preparation of Monoclonal Antibody Against AlEcR-A Protein and Its Response Induced by Exogenous 20-Hydroxyecdysone in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2017, 50(1): 86-93.
[15] HE Hong-hong, CUI Yan, PAN Yang-yang, FAN Jiang-feng, HU Wei, ZHANG Yi-fu, LIU Peng-gang,LI Qin, YU Si-jiu. Cloning of Bos Grunniens HSP27 Gene and Its Expression in the Female Yak Reproductive Organs [J]. Scientia Agricultura Sinica, 2015, 48(20): 4178-4187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!