Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (3): 606-613.doi: 10.3864/j.issn.0578-1752.2013.03.017

• STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

Protective Effect of Lactobacillus plantarum C88 on H2O2-Induced Oxidative Stress in Caco-2 Cells

 LI  Sheng-Yu, LI  Da, ZHAO  Yu-Juan, ZHANG  Xue, HUANG  Li, ZHAO  Yu-Jian, YANG  Zhen-Nai   

  1. 1.Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences/National R&D Branch Centre for Milk Processing, Changchun 130033
    2.School of Food Science, Beijing Technology and Business University, Beijing 100048
  • Received:2012-10-08 Online:2013-02-01 Published:2012-12-21

Abstract: 【Objective】 The aim of the study was to evaluate the antioxidant activity of L. plantarum C88 against H2O2 induced Caco-2 cell oxidative stress.【Method】In vitro methods simulating gastric and small intestine digestive processes, coupled with human colon carcinoma cells in oxidative stress, to hydrogen peroxide at concentrations of 0.1 mmol•L-1 and 0.2 mmol•L-1 for 12 h, 24 h, 36 h, 48 h, are the valid tools to evaluate the antioxidant activity of L. plantarum C88. The free radical scavenging capacity and antioxidant enzymes activitties in the cell culture supernatants and cell disruptions were measured.【Result】Compared with the oxidative stress group, L. plantarum C88 at 1011CFU/mL signi?cantly increased the glutathione peroxidase (GSH-Px) (P<0.05) and the total antioxidation capacity (T-AOC) (P<0.05) in the cultured supernatants, the hydroxyl radical scavenging ability (P<0.05), the glutathione peroxidase (GSH Px) (P<0.05) and the superoxide dismutase (SOD) activity in the cell disruptions.【Conclusion】Results of the study suggested that L. plantarum C88 could protect the Caco-2 cells against H2O2-induced oxidative stress by renewing the enzymatic and non-enzymatic antioxidant defense system.

Key words: lactic acid bacteria , Lactobacillus plantarum , antioxidant activity , probiotic

[1]Ahotupa M, Saxelin M, Korpela R. Antioxidative properties of Lactobacillus GG. Nutrition Today, 1996, 31(6):51-52.

[2]Lee B J, Kim J S, Kang Y M, Lim J H, Kim Y M, Lee M S, Jeong M H, Ahn C B, Je J Y. Antioxidant activity and γ-aminobutyric acid (GABA) contentinseatangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chemistry, 2010, 122(1):271-276.

[3]Lin M Y, Yen C L. Antioxidative ability of lactic acid bacteria. Journal of Agricultural and Food Chemistry, 1999, 47(4):1460-1466.

[4]Amanatidou A, Smid E J, Bennik M H, Gorris L G. Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentrations. FEMS Microbiology Letters, 2001, 203(1): 87-94.

[5]Lin M Y, Chang F J. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digestive Diseases and Sciences, 2000, 45(8): 1617-1622.

[6]Kim H S, Chae H S, Jeong S G, Ham J S, Im S K, Ahn C N, Lee J M. In vitro antioxidative properties of lactobacilli. Asian-Australasian Journal of Animal Sciences, 2006, 19(2):262-265.

[7]Liu C F, Tseng K C, Chiang S S, Lee B H, Hsu W H, Pan T M. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. Journal of the Science of Food and Agriculture, 2011, 91(12): 2284-2291.

[8]Pan D D, Mei X M. Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohydrate Polymer, 2010, 80(3):908-914.

[9]Xu R, Shang N, Li P. In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. Anaerobe, 2011, 17(5):226-231.

[10]Yi Z J, Fu Y R, Li M, Gao K S, Zhang X G. Effect of LTA isolated from bifidobacteria on D-galactose-induced aging. Experimental Gerontology, 2009, 44(12):760-765.

[11]Mateos R, Pereira-Caro G, Saha S, Cert R, Redondo-Horcajo M, Bravo L, Kroon P A. Acetylation of hydroxytyrosol enhances its transport across differentiated Caco-2 cell monolayers. Food Chemistry, 2011, 125(3):865-872.

[12]De Man J C, Rogosa M, Sharpe M E. A medium for the cultivation of lactobacilli. Journal of Applied Microbiology, 1960, 23(1):130-135.

[13]Song X, Bao M, Li D, Li Y M. Advanced glycationin D-galacose induced mouse aging model. Mechanisms of Ageing and Development, 1999, 108(3):239-251.

[14]Yan D, Dong J, Sulik K K, Shen S Y. Induction of the Nrf2-driven antioxidant response by tert-butylhydroquinone prevents ethanol- induced apoptosis in cranial neural crest cells. Biochemical Pharmacology, 2010, 80(1):144-149.

[15]Wijeratne S S, Cuppett S L, Schlegel V. Hydrogen peroxide induced oxidative stress damage and antioxidant enzyme response in Caco-2 human colon cells. Journal of Agricultural and Food Chemistry, 2005, 53(22):8768-8774.

[16]Kim S Y, Kim R H, Huh T L. α-Phenyl-N-t-butylnitrone protects oxidative damage to HepG2 cells. Journal of Biochemistry and Molecular Biology, 2000, 34(1): 43-46.

[17]Dash R, Acharya C, Bindu P C. Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. BMB Report, 2008, 41(3): 236-241.

[18]Liu L N, Mei Q B, Liu L. Protective effects of Rheum tanguticum polysaccharide against hydrogen peroxide-induced intestinal epithelial cell injury. World Journal of Gastroenterology, 2005, 11(10): 1503-1507.

[19]Cilla A, Laparra J M, Alegria A, Barbera R, Farre R. Antioxidant effect derived from bioaccessible fractions of fruit beverages against H2O2-induced oxidative stress in Caco-2 cells. Food Chemistry, 2008, 106 (3): 1180-1187.

[20]Laparra J M, Alegría A, Barberá R, Farré R. Antioxidant effect of casein phosphopeptides compared with fruit beverages supplemented with skimmed milk against H2O2-induced oxidative stress in Caco-2 cells. Food Research International, 2008,41(7) :773-779.

[21]Jing H, Kitts D D. Antioxidant activity of sugar-lysine Maillard reaction products in cell free and cell culture systems. Archives of Biochemistry and Biophysics, 2004, 429(2) :154-163.

[22]崔志文, 黄琴, 黄怡, 吴红照, 文静, 李卫芬. 鼠李糖乳酸杆菌对Caco-2细胞抗氧化功能的影响. 中国农业科学, 2011, 44(23): 4926-4932.

Cui Z W, Huang Q, Huang Y, Wu H Z, Wen J, Li W F. Antioxidative function of Lacbacillus rhamnosus to Caco-2 cells. Scientia Agricultura Sinica, 2011, 44(23): 4926-4932.(in Chinese)

[23]崔志文, 黄琴, 黄怡, 吴红照, 文静, 李卫芬. 枯草芽孢杆菌对Caco-2细胞抗氧化功能的影响研究. 动物营养学报, 2011, 23(2):293-298.

Cui Z W, Huang Q, Huang Y, Wu H Z, Wen J, Li W F. Effects of Bacillus subtilis on antioxidative function of Caco-2 cells. Chinese Journal of Animal Nutrition, 2011, 23(2):293-298. (in Chinese)
[1] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[2] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[3] WANG Yi,LI Miao,LI YongFeng,SUN Yuan,QIU HuaJi. Identification and Properties of Lactic Acid Bacteria Isolated from Wild Boar Feces [J]. Scientia Agricultura Sinica, 2020, 53(14): 2964-2973.
[4] LI Jie,JIA XuChao,ZHANG RuiFen,LIU Lei,CHI JianWei,HUANG Fei,DONG LiHong,ZHANG MingWei. Isolation, Structural Characterization and Antioxidant Activity of Black Sesame Melanin [J]. Scientia Agricultura Sinica, 2020, 53(12): 2477-2492.
[5] YU Jing,ZHANG WeiXing,MA LanTing,XU BaoHua. Effect of Dietary α-Linolenic Acid Levels on Physiological Function of Apis mellifera ligustica Worker Bee Larvae [J]. Scientia Agricultura Sinica, 2019, 52(13): 2368-2378.
[6] YIN Xue, GUO XueFeng, LIU JunFeng, ZHANG XiuPing, XI LinQiao, ZHANG SuJiang. Isolation and Identification of Lactic Acid Bacteria from Halostachys Caspica Silage [J]. Scientia Agricultura Sinica, 2018, 51(14): 2825-2834.
[7] LI XiaoYing, XUE Mei, FAN WenQiao, LUO Jie. Analysis of Phenolic Compounds and Antioxidant Activities of Blueberry Leaves from Different Drying Methods [J]. Scientia Agricultura Sinica, 2018, 51(13): 2570-2578.
[8] LIU Yu, LIU ShengYu, LU JuanFang, YU QingFan, XI WanPeng. Evaluation of Flavor Quality and Antioxidant Capacity of Apple Fruits from Three Xinjiang Red-Flesh Lines [J]. Scientia Agricultura Sinica, 2017, 50(8): 1495-1504.
[9] BU Xiao, XUE Xue, CHENG Jing, LIU ShuWen. Evaluation on Malolactic Fermentation Potential of Wine Lactobacillus plantarum [J]. Scientia Agricultura Sinica, 2017, 50(5): 959-968.
[10] DONG Li-hong, ZHANG Rui-fen, XIAO Juan, DENG Yuan-yuan, ZHANG Yan, LIU Lei, HUANG Fei, WEI Zhen-cheng, ZHANG Ming-wei. Separation and Antioxidant Activity of Different Phenolic Compound Fractions from Litchi Pulp [J]. Scientia Agricultura Sinica, 2016, 49(20): 4004-4015.
[11] NI Wei-ru, WANG An-ran, HE Xi-yan, XU Jin, WU Shu-jing, CHEN Xue-sen, MAO Zhi-quan, SHEN Xiang. Effects of After-Reap Soil on Physiological Indexes and Leaf Antioxidant Activity of the Different Apple Cultivars With the Same Rootstock [J]. Scientia Agricultura Sinica, 2016, 49(18): 3597-3607.
[12] LAI Ting, LIU Lei, ZHANG Ming-wei, ZHANG Rui-fen, ZHANG Yan, WEI Zhen-cheng, DENG Yuan-yuan. Effect of Lactic Acid Bacteria Fermentation on Phenolic Profiles and Antioxidant Activity of Dried Longan Flesh [J]. Scientia Agricultura Sinica, 2016, 49(10): 1979-1989.
[13] LI Guan-nan, XIA Xue-juan, SENDEGEYA Parfait, HE Shi-bao, GUO Dong-dong, ZHU Yong. Screening and Identification of Silkworm Probiotic Bacillus SWL-19 and Its Effect on Intestinal Microflora Diversity [J]. Scientia Agricultura Sinica, 2015, 48(9): 1845-1853.
[14] YING Bi, CHANG Xiao-yu, LIU Zhi-wen, ZHOU Tong, CHEN Yao, ZHONG Ping-an, XU Bo. Food-Grade Induced Expression and Enzymatic Properties of Nitrite Reductase from Lactobacillus plantarum WU14 Under Nitrite Stress [J]. Scientia Agricultura Sinica, 2015, 48(7): 1415-1427.
[15] LIU Lei, WANG Hao, ZHANG Ming-wei, ZHANG Yan, ZHANG Rui-fen, TANG Xiao-jun, DENG Yuan-yuan. Optimization of the Process Conditions and Change of Volatile Flavor Components of Longan Pulp Fermented by Lactic Acid Bacteria [J]. Scientia Agricultura Sinica, 2015, 48(20): 4147-4158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!