Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (22): 4688-4696.doi: 10.3864/j.issn.0578-1752.2012.22.015

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Construction and Identification of Normalized Subtractive cDNA Library of Plumage Color-Related Genes in Mule Duck

 ZHENG  Nen-Zhu, CHEN  Xiao-Yan, LU  Li-Zhi, ZHU  Zhi-Ming, MIAO  Zhong-Wei, XIN  Qing-Wu, CHEN  Hui, XIAO  Tian-Fang   

  1. 1.Institute of Animal Science and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013
    2.Institute of Animal Science and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021
    3.Institute of Animal Science, Fujian Agricultural and Forestry University, Fuzhou 350002
  • Received:2012-04-19 Online:2012-11-15 Published:2012-08-27

Abstract: 【Objective】 The aim of this study was to isolate plumage color related-genes in mule duck and explore its molecular mechanism. 【Method】 A normalized subtractive library of plumage color related-genes of mule duck was constructed. White plumage skin and black plumage skin were adopted respectively as the tester and driver, and a duplex-specific nuclease (DSN) normalized subtractive hybridization method was used to construct the library, and real-time PCR was employed to identify the quality of the library.【Result】Results showed that 64 genes with the average size of 1 031 bp were obtained by selecting and sequencing 144 positive clones randomly. Nucleotide BLAST homological analysis incidated that 21 genes had similarities to known genes which enjoy 92.8% homology, and 43 genes were not matched which presumably may be new genes related to plumage color. Geneontology displayed that these known genes were involved in many biological processes such as signal transduction, cell structure, material transport, apoptosis, cell and organism defense, transcription and expression regulation,and had different correlations with formation and transshipment of pigment. 【Conclusion】 It was determined that the library had good quality and could enrich the genes of the white plumage via real-time PCR.

Key words: mule duck , plumage color gene , duplex-specific nuclease (DSN) , subtractive hybridization , real-time PCR

[1]陈  晖, 檀俊秩, 刘玉涛, 宋健捷. 半番鸭白色羽毛性状的选择及其效应分析. 畜牧兽医学报, 2000, 31(5): 406-410.

Chen H, Tan J Z, Liu Y T, Song J J. The selection of mule duck’s white plumage and its response analysis. Acta Veterinaria et Zootechnica Sinica, 2000, 31(5): 406-410. (in Chinese)

[2]李盛霖, 陈  晖, 郑嫩珠, 缪中纬, 陈岩锋, 董晓宁. 白羽半番鸭选育研究与开发应用前景分析. 福建农业学报, 2005, 20(增刊): 165-167.

Li S L, Chen H, Zheng N Z, Miao Z W, Chen Y F, Dong X N. Study on the breeding of white plumage mule duck and analysis of its developing prospect. Fujian Journal of Agricultural Sciences, 2005, 20(Suppl.): 165-167. (in Chinese)

[3]郑嫩珠, 陈  晖, 朱志明, 缪中纬, 李盛霖, 董晓宁. 大型白羽半番鸭母本的选育研究. 福建农业学报, 2010, 25(4): 396-398.

Zheng N Z, Chen H, Zhu Z M, Miao Z W, Li S L, Dong X N. Breeding of female parent of large white-plumage mule duck. Fujian Journal of Agricultural Science, 2010, 25(4): 396-398. (in Chinese)

[4]王存芳, 李  宁, 吴常信. 基于F2群体的藏鸡羽色、胫色性状的遗传分析. 遗传, 2006, 28(7): 810-814.

Wang C F, Li N, Wu C X. Genetic analysis of feat her color and shank color traits based on F2 resource population in tibetan chicken. Hereditas, 2006, 28(7): 810-814. (in Chinese)

[5]Dai Z M, Zhu X J, Yang W J. Full-length normalization subtractive hybridization: A novel method for generating differentially expressed cDNAs. Molecular Biotechnology, 2009, 43: 257-263.

[6]钟灵秀, 刘雅丽, 李进军, 沈军达, 卢立志, 石放雄. 鸭早期胚胎发育相关基因消减文库的构建与分析. 农业生物技术学报, 2011, 19(4): 763-770.

Zhong L X, Liu Y L, Li J J, Shen J D, Lu L Z, Shi F X. Construction and analysis of a subtractive cDNA library of duck early embryonic development related genes. Journal of Agricultural Biotechnology, 2011, 19(4): 763-770. (in Chinese)

[7]Takeuchi S, Suzuki H, Yabuuchi M, Takahashi S. A possible involvement of melanocortin 1-receptor in regulating plumage color pigmentation in the chicken. Biochimica et Biophysica Acta, 1996, 1308: 164-168.

[8]Kerje S, Lind J, Schutz K, Jensen P, Andersson L. Melanocortin 1-receptor (MC1R) mutations are associated with plumage colour in chickern. Animal Genetics, 2003, 34: 241-248.

[9]杨永升, 邓学梅, 李  宁, 傅  衍, 朱睦元, 吴常信. MC1R是控制鸡黑色素形成的候选主效基因. 生物化学与生物物理进展, 2004, 31(6): 500-505.

Yang Y S, Deng X M, Li N, Fu Y, Zhu M Y, Wu C X. MC1R is the candidate gene regulating melanin synthesis in chicken. Progress in Biochemistry Biophysics, 2004, 31(6): 500-505. (in Chinese)

[10]Chang C M, Coville J L, Coquerelle G, Gourichon D, Oulmouden A, Boichar M T. Complete association between a retroviral insertion in the tyrosinase gene and the recessive white mutation in chicken. BMC Genomics, 2006, 7: 19-33.

[11]陈志强, 邓学梅, 周  军, 李  宁, 吴常信. 鸡的酪氨酸酶基因5’调控区的单链构象多态性分析. 农业生物技术学报, 2005, 13(2): 191-194.

Chen Z C, Deng X M, Zhou J, Li N, Wu C X. Analysis of the single-strand conformation polymorphisms of the upstream 5 ' regulating region of chicken tyrosinase (TYR) Genegene. Journal of Agricultural Biotechnology, 2005, 13(2): 191-194. (in Chinese)

[12]Peng R H, Xiong A S, Xue Y, Li X, Liu J G, Cai B, Yao Q H. Kamchatka crab duplex-speci?c nuclease-mediated transcripto-me subtraction method for identifying long cDNAs of differentially expressed genes. Analytical Biochemistry, 2008, 372(2): 148-155.

[13]Ke T, Dong C H, Mao H, Zhao Y Z, Liu H Y, Liu S Y. Construction of a normalized full-Length cDNA library of sesame developing seed by DSN and SMARTTM. Gricultural Sciences in China, 2011, 10(7): 1004-1009.

[14]Wiemann S, Mehrle A, Bechtel S, Wellenreuther R, Pepperkok R, Poustka A. cDNAs for functional genomics and proteomics: the German consortium. Comptes Rendus Biologies, 2003, 326: 1003-1009.

[15]Baxter L L, Loftus S K, Pavan W J. Networks and pathways in pigmentation, health, and disease. Systems Biology and Medicine, 2009, 1(3): 359-371.

[16]Parra E J. Human pigmentation variation: evolution, genetic basis, and implications for public health. Yearbook of Physical Anthropology, 2007, 50: 85-105.

[17]Chen L L, Hu L, Chan T H, Tsao SW, Xie D, Huo K K, Fu L, Ma S, Zheng B J, Guan X Y. Chromodomain helicase/adenosine triphosphatase DNA binding protein 1–like (CHD1L) gene suppresses the nucleus-to-mitochondria translocation of Nur77 to sustain hepatocellular carcinoma cell survival. Hepatology, 2009, 50(1): 122-129.

[18]Song L X, Fricker L D. Cloning and expression of human carboxypeptidase Z, a novel metallocarboxypeptidase. The Journal of Biological Chemistry, 1997, 272(16): 10543-10550.

[19]Moeller C, Swindell E C, Kispert A, Eichele G. Carboxypeptidase Z (CPZ) modulates Wnt signaling and regulates the development of skeletal elements in the chicken. Skeletal Development, 2003, 130(21): 5103-5111.

[20]Dai S M, Matsuno H, Nakamura H, Nishioka K, Yudoh K. Interleukin-18 enhances monocyte tumor necrosis factor alpha and interleukin-1beta production induced by direct contact with T lymphocytes: implications in rheumatoid arthritis. Arthritis and Rheumatism, 2004, 50(2): 432-443.

[21]Rooney T, Murphy E, Benito M, Lombard P R, FitzGerald O, Dayer J M, Bresnihan B. Synovial tissue interleukin-18 expression and the response to treatment in patients with inflammatory arthritis. Annals of Rheumatic Diseases, 2004, 63: 1393-1398.

[22]Park M C, Park Y B, Lee S K. Elevated interleukin-18 levels correlated with disease activity in systemic lupus erythematosus. Clinical Rheumatology, 2004, 23(3): 225-229.

[23]Ludwiczek O, Kaser A, Novick D, Dinarello C A, Rubinstein M, Tilg H. Elevated systemic levels of free interleukin-18 (IL-18) in patients with Crohn´s disease. Eur Cytokine Netw, 2005, 16: 27-33.

[24]马月萍, 戴思兰, 马艳蓉. 荧光定量PCR技术在植物研究中的应用. 生物技术通报, 2011(7): 37-44.

Ma Y P, Dai S L, Ma Y R. Application of technique of quantitative real-time PCR in research of plants. Biotechnology Bulletin, 2011(7): 37-44. (in Chinese)

[25]李文海, 邓学梅, 李  宁, 王少华, 赵毅强, 杜正霖, 张  然, 吴克亮, 吴常信. SSH法结合定量PCR技术研究双肌臀猪肌肉组织的差异表达基因. 生物化学和生物物理进展, 2005, 32(4): 353-358.

Li W H, Deng X M, Li N, Wang S H, Zhao Y Q, Du Z L, Zhang R, Wu K L, Wu C X. Isolation of differentially expressed genes in double-muscling large white pig by SSH and Q-PCR strategy. Progress in Biochemistry and Biophysics, 2005, 32(4): 353-358. (in Chinese)

[26]刘晓慧, 王  秀, 王义权. 文昌鱼性腺差减cDNA 文库的构建. 动物学报, 2008, 54(3): 482-488.

Liu X H, Wang X, Wang Y Q. Construction of subtractive cDNA library of the gonado famphioxus branchiostoma japonicum. Acta Zoologica Sinica, 2008, 54(3): 482-488. (in Chinese)
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[3] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[4] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[5] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[6] LI WenXue, XIAO RuiGang, LÜ MiaoMiao, DING Ning, SHI HuaRong, GU PeiWen. Establishment and Application of Real-Time PCR for Quantitatively Detecting Plasmopara viticola in Vitis vinifera [J]. Scientia Agricultura Sinica, 2019, 52(9): 1529-1540.
[7] BAI HuiYang, LU Geng, LU JunXing, GUAN Li, TANG Xin, ZHANG Tao. Cloning and Expression Analysis of Jasmonic Acid Carboxyl Methyltransferase Gene from Perilla frutescens [J]. Scientia Agricultura Sinica, 2019, 52(9): 1657-1666.
[8] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[9] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[10] BAI Hui, SONG ZhenJun, WANG YongFang, QUAN JianZhang, MA JiFang, LIU Lei, LI ZhiYong, DONG ZhiPing. Identification and Expression Analysis of MYB Transcription Factors Related to Rust Resistance in Foxtail Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4016-4026.
[11] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[12] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[13] XIE Jie,WANG Ming,DING HongYing,LI Qing,WANG WanXing,XIONG XingYao,QIN YuZhi. Expression and Structural Analysis of SC MI390-5p and Its Target Genes in Potato Response to Low Temperature [J]. Scientia Agricultura Sinica, 2019, 52(13): 2295-2308.
[14] ZHANG ShuangNa, LI ZhengNan, FAN XuDong, ZHANG ZunPing, REN Fang, HU GuoJun, DONG YaFeng. Establishment of RT-LAMP Assay for Detection of Apple chlorotic leaf spot virus (ACLSV) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1706-1716.
[15] SUN BingXue,SHI YanXia,ZHU FaDI,XIE XueWen,CHAI ALi,LI BaoJu. Establishment of AS-real-time PCR for Quantitatively Detecting the H278R Allele in the SdhB Associated with Corynespora cassiicola in Cucumber [J]. Scientia Agricultura Sinica, 2018, 51(24): 4647-4658.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!