Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (21): 4457-4464.doi: 10.3864/j.issn.0578-1752.2012.21.014

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Study on Optimization of Non-Starch Polysaccharide Enzymes of Broiler Diets in Vitro

 HE  Ke-Lin, SA  Ren-Na, GAO  Jie, LI  Dong-Wei, ZHUANG  Xiao-Feng, ZHANG  Hong-Fu   

  1. 1.中国农业科学院北京畜牧兽医研究所/动物营养学国家重点实验室,北京 100193
  • Received:2012-03-22 Online:2012-11-01 Published:2012-05-08

Abstract: 【Objective】The study was conducted to discuss the effects of non-starch polysaccharides (NSP) enzymes on the in vitro digestive energy (IVDE) of broiler diets of different contents of NSP.【Method】The first step was to investigate the dose-response of the NSP enzymes on the IVDE in diets using one-way randomized experimental design. Five NSP enzymes including xylanase, β-glucanase, cellulose, pectinase, and β-mannanase were added into corn-soybean diet and wheat-soybean diet, from 0 to 900 µg•g-1. The second step was to screen the optimum enzyme combinations using quadratic regress-orthogonal rotary design. The method of testing IVDE was a two-stage enzymic hydrolysis with pepsin-pancreatin in vitro.【Result】The IVDE of broiler diet regulating by NSP enzyme appeared S state diagram. The xylanase had more promotion effects than other NSP enzymes. It increased IVDE by 0.24 MJ•kg-1 and 0.40 MJ•kg-1 in corn-soybean diet and wheat-soybean diet, respectively. In corn-soybean diet, the optimum enzyme combinations were xylanase 34 836.4 U•kg-1, β-glucanase 6 762.0 U•kg-1, cellulose 1 159.2 U•kg-1, pectase 872.6 U•kg-1, and β-mannanase 24 535.9 U•kg-1. In wheat-soybean diet, the optimum enzyme combinations were xylanase 65 405.5 U•kg-1, β-glucanase 10 131.5 U•kg-1, cellulose 980.0 U•kg-1, pectase 501.6 U•kg-1, and β-mannanase 5 141.4 U•kg-1. 【Conclusion】The findings showed that using five kinds of NSP enzymes in corn-soybean and wheat-soybean diets of broiler could improve the in vitro digestive energy.

Key words: NSP enzyme, in vitro digestive energy, enzyme combination, broiler, in vitro

[1]Bindelle J, Pieper R, Montoya C A, van Kessel A G, Leterme P. Nonstarch polysaccharide‐degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract. Federation of European Microbiological Societies Microbiology Ecology, 2011, 76: 553-563.

[2]Jia W, Slominski B A, Bruce H L, Bruce H L, Blank G, Crow G, Jones O. Effects of diet type and enzyme addition on growth performance and gut health of broiler chickens during subclinical clostridium perfringens challenge. Poultry Science, 2009, 88(1): 132-140.

[3]Lin P H, Shih B L, Hsu J C. Effects of different sources of dietary non-starch polysaccharides on the growth performance, development of digestive tract and activities of pancreatic enzymes in goslings. British Poultry Science, 2010, 51(2): 270-277.

[4]Choct M, Hughes R J, Trimble R P, Angkanaporn K, Annison G. Non-starch polysaccharide-degrading enzymes increase the performance of broiler chickens fed wheat of low apparent metabolizable energy. Journal of Nutrition, 1995, 125(3): 485-492.

[5]Irish G G, Balnave D. Non-starch polysaccharides and broiler performance on diets containing soyabean meal as the sole protein concentrate. Australian Journal of Agricultural Research, 1993, 44: 1483-1499.

[6]刘  强. 我国麦类饲料中非淀粉多糖抗营养作用机理的研究[D]. 北京: 中国农业科学院, 1998.

Liu Q. The research of anti-nutrition mechanism of wheat feed non starch polysaccharides[D]. Beijing: Chinese Academy of Agricultural Sciences, 1998. (in Chinese)

[7]Wang Z R, Qiao S Y, Lu W Q, Li D F. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poultry Science, 2005, 84(6): 875-881.

[8]Engberg R M, Hedemann M S, Steenfeldt S, Jensen B B. Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poultry Science, 2004, 83(6): 925-938.

[9]丁雪梅, 张克英. 小麦-豆粕型日粮添加木聚糖酶对艾维茵肉鸡免疫指标, 肠道形态和微生物茵群的影响. 动物营养学报, 2009, 21(6): 931-937.

Ding X M, Zhang K Y. The effect of xylanase on immune indices, intestinal morphology and microorganism group of AI Weiyin broiler with wheat soybean diet. Journal of Animal Nutrition, 2009, 21(6): 931-937. (in Chinese)

[10]Annison G, Choct M. Anti-nutritive activities of cereal non-starch polysaccharides in broiler diets and strategies minimizing their effects. World’s Poultry Science Journal, 1991, 47(3): 232-242.

[11]Selle P H, Ravindran V, Ravindran G, Pittolo P H, BrydenW L. Influence of phytase and xylanase supplementation on growth performance and nutrient utilisation of broilers offered wheat-based diets. Asian Australasian Journal of Animal Sciences, 2003, 16(3): 394-402.

[12]Yu B, Hsu J C, Chiou P W S. Effects of [beta]-glucanase supplementation of barley diets on growth performance of broilers. Animal Feed Sscience and Technology, 1998, 70(4): 353-361.

[13]Philip J S, Gilbert H J, Smithard R R. Growth, viscosity and beta‐glucanase activity of intestinal fluid in broiler chickens fed on barley‐based diets with or without exogenous beta‐glucanase. British Poultry Science, 1995, 36(4): 599-603.

[14]Nahm K H, Carlson C W. Effects of cellulase from Trichoderma viride on nutrient utilization by broilers. Poultry Science, 1985, 64(8): 1536-1540.

[15]陈晓春, 陈代文. 纤维素酶对肉鸡生产性能和营养物质消化利用率的影响. 饲料研究, 2005(11): 7-9.

Chen X C, Chen D W. The effect of cellulase on production performance and nutrient digestibility of broiler. Feed Research, 2005(11): 7-9. (in Chinese)

[16]Saleh F, Tahir M, Ohtsuka A, Hayashi K. A mixture of pure cellulase, hemicellulase and pectinase improves broiler performance. British Poultry Science, 2005, 46(5): 602-606.

[17]Hogbreg A, Lindberg J E. Influence of cereal non-starch polysaccharides and enzyme supplementation on digestion site and gut environment in weaned piglets. Animal Feed Science and Technology, 2004, 116(1/2): 113-128.

[18]Brenes A, Slominski B A, Marquardt R R, Guenter W, Viveros A. Effect of enzyme addition on the digestibilities of cell wall polysaccharides and oligosaccharides from whole, dehulled, and ethanol-extracted white lupins in chickens. Poultry Science, 2003, 82(11): 1716-1725.

[19]Kocher A, Choct M, Porter M D, Broz J . Effects of feed enzymes on nutritive value of soyabean meal fed to broilers. British Poultry Science, 2002, 1(43): 54-63.

[20]Malathil V, Devegowda G. In vitro evaluation of non-starch polysaccharide digestibility of feed ingredients by enzymes. Poultry Science, 2001, 80: 302-305.

[21]王恩玲. 非淀粉多糖酶提高肉鸭日粮有效能潜力研究[D]. 北京: 中国农业科学院, 2008.

Wang E L. The study of non starch polysaccharides enzymes increasing the feed potential of diet of meat duck[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008. (in Chinese)

[22]O’Neill H V M, Liu N, Wang J P, Diallo A, Hill S. Effect of xylanase on performance and apparent metabolisable energy in starter broilers fed diets containing one maize variety harvested in different regions of China. Asian-Australasian Journal of Animal Sciences, 2012, 25(40): 515-523.

[23]蒋桂韬, 张石蕊, 胡  艳, 刘绍伟, 周  辉, 张  旭, 王向荣, 戴求仲. 不同来源木聚糖酶对黄羽肉鸡生长性能和养分利用率的影响. 家畜生态学报, 2010, 31(3): 50-55.

Jiang G T, Zhang S R, Hu Y, Liu S W, Zhou H, Zhang X, Wang X R, Dai Q Z. The effect of different sources of xylanase supplementation on growth performance and nutrient utilization of Huang Yu broiler. Journal of Animal Ecology, 2010, 31(3): 50-55. (in Chinese)

[24]Rebole A, Rodriguez M L, Alzueta C, Ortiz L T, Treviño J. A short note on effect of enzyme supplement on the nutritive value of broiler chick diets containing maize, soyabean meal and full-fat sunflower seed. Animal Feed Science and Technology, 1999, 78(1/2): 153-158.

[25]中华人民共和国国家质量监督检验检疫总局. 饲料添加剂木聚糖酶活力的测定-分光光度法(GB/T 23874-2009). 北京: 中国标准出版社, 2009.

General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Determination of Xylanase Activity in Feed Additive-Spectrophotometric Method (GB/T 23874-2009). Beijing: China Standard Press, 2009. (in Chinese)

[26]中华人民共和国农业部. 饲料添加剂纤维素酶活力的测定-分光光度法(NY/T 912-2004). 北京: 中国农业出版社, 2004.

Ministry of Agriculture of the Peoples’s Republic of China. Determination of Cellulose Activity in Feed Additive- Spectrophotometric Method (NY/T 912-2004). Beijing: China Agriculture Press, 2004. (in Chinese)

[27]中华人民共和国农业部. 饲料添加剂β-葡聚糖酶活力的测定-分光光度法(NY/T 911-2004), 2004.

Ministry of Agriculture of the Peoples’s Republic of China. Determination of β-Glucanase Activity in Feed Additive- Spectrophotometric Method (NY/T 911-2004). Beijing: China Agriculture Press, 2004. (in Chinese)

[28]中华人民共和国农业部. 鸡饲养标准(NY/T 33-2004). 北京: 中国农业出版社, 2004.

Ministry of Agriculture of the Peoples’s Republic of China. Feeding Standard of Chicken (NY/T 33-2004). Beijing: China Agriculture Press, 2004. (in Chinese)

[29]Knudsen K E B. Carbohydrate and lignin contents of plant materials used in animal feeding. Animal Feed Science and Ttechnology, 1997, 67(4): 319-338.

[30]侯小锋. 非淀粉多糖酶制剂对肉仔鸡日粮能量代谢率的调控及其体外评定方法的研究[D]. 太谷: 山西农业大学, 2005.

Hou X F. Study on of non starch polysaccharides enzyme of broiler diet and perdietion of digestibility with a two-step in vitro method[D]. Taigu: Shanxi Agricultural University, 2005. (in Chinese)

[31]Meng X, Slominski B A, Nyachoti C M, Campbell L D, Guenter W. Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poultry Science, 2005, 84(1): 37-47.

[32]付生慧. 非淀粉多糖酶谱筛选及酶制剂对肉仔鸡日粮代谢能调控效应的研究[D]. 武汉: 华中农业大学, 2006.

Fu S H. Screening of NSP enzyme combination and does-response of metabolizable energy in broiler diets[D]. Wuhan: Huazhong Agricultural University, 2006. (in Chinese)

[33]蒋小红. 非淀粉多糖酶制剂对樱桃谷鸭日粮能量代谢调控的研究[D]. 长沙: 湖南农业大学, 2007.

Jiang X H. Studies on the effects of non starch polysaccharide enzyme on energy metabolizable regulation in cherry valley duckling diets[D]. Changsha: Hunan Agricultural University, 2007. (in Chinese)

[34]Marquardt R R, Brenes A, Zhang Z, Boros D. Use of enzymes to improve nutrient availability in poultryfeedstuffs. Animal Feed Science and Technology, 1996, 60(3): 321-330.
[1] NUERHATI·Silafuer ,WUSIMAN·Yimiti . Effects of Amino Acid By-Products on Fermentation Quality and Digestibility of White Sorghum Silage [J]. Scientia Agricultura Sinica, 2022, 55(20): 4065-4074.
[2] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[3] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[4] DING Peng,TONG YueYue,LIU HuiChao,YIN Xin,LIU JiangJun,HE Xi,SONG ZeHe,ZHANG HaiHan. Dynamic Changes of Yolk Microbiota in Yellow-Feathered Broiler and Its Role on Early Colonization of Intestinal Microbiota During the Embryonic Stage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2837-2849.
[5] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[6] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[7] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[8] ZHANG Lan,WANG LiangZhi,HUANG YanLing,LIAO XiuDong,ZHANG LiYang,LÜ Lin,LUO XuGang. Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers [J]. Scientia Agricultura Sinica, 2021, 54(22): 4906-4916.
[9] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[10] CHEN Yuan,CAI He,LI Li,WANG LinJie,ZHONG Tao,ZHANG HongPing. Alternative Splicing of TNNT3 and Its Effect on the Differentiation of MuSCs in Goat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4466-4477.
[11] Zhen LI,ShiXiong YANG,Sheng NIU,Ning ZHANG,Xin LI,YangYang ZHANG,YunFei JIA,ZhiXiong TIAN,GuanBao NING,Ding ZHANG,WenXia TIAN. Effect of Recombinant GSTA3 Protein on Expression of the Anti-Apoptotic Gene BAG-3 in Thiram-Induced Tibial Chondrodysplasia [J]. Scientia Agricultura Sinica, 2020, 53(9): 1921-1930.
[12] SUN YongBo,WANG Ya,SA RENNA,ZHANG HongFu. Effects of Chronic Ammonia Stress on Serum Metabolites of Broilers Based on GC-MS [J]. Scientia Agricultura Sinica, 2020, 53(8): 1688-1698.
[13] LI GuiRong,QUAN Ran,CHENG ShanShan,HOU XiaoJin,FAN XiuCai,HU HuiLing. The Influencing Factors of in-vitro Ovule Development in Seedless Grape and Its Physiological Changes [J]. Scientia Agricultura Sinica, 2020, 53(22): 4646-4657.
[14] LIN WenZhong,WU Ran,JIN Jing,QIU Ping,ZHANG Jie,WU ZuJian,DU ZhenGuo. An in vitro Cap-Snatching System of Rice Stripe Tenuivirus Based on Crude Virion Preparations [J]. Scientia Agricultura Sinica, 2020, 53(21): 4440-4448.
[15] Shuang XING,JingHai FENG. Effects of Lactobacillus Supplements on Growth Performance of Broilers: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(1): 183-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!