Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (20): 4149-4155.doi: 10.3864/j.issn.0578-1752.2012.20.004

• PLANT PROTECTION • Previous Articles     Next Articles

HgCl2-Induced Programmed Cell Death in Tobacco Cells

 LIU  Jin-Wei, JIAO  Jiao, WANG  Lei, WANG  Lian-Lian, CHU  Xiao-Jing, LIANG  Yuan-Cun   

  1. 1.山东农业大学植物保护学院,山东泰安 271018
  • Received:2012-03-09 Online:2012-10-15 Published:2012-04-26

Abstract: 【Objective】 The objective of this study is to investigate the characteristics of cell death and molecular mechanisms induced by HgCl2. 【Method】 HgCl2-induced cell death was studied in suspension-cultured tobacco cells via neutral red staining, a set of cellular morphological and biochemical characteristics was elucidated in the occurrence of cell death, and pharmacological method was used to explore the mechanisms activated by HgCl2. 【Result】 Within 24 and 48 h, HgCl2 treatment induced cell death in a concentration-dependent manner. Tobacco cells treated with HgCl2 showed typical features of PCD such as chromatin condensation, TUNEL-positive nuclei and DNA ladder formation. HgCl2-induced cell death was accompanied by an increasing production of H2O2. Consistently, the addition of the antioxidants greatly reduced cell death. Pretreatment with protein kinase inhibitor staurosporin, phospholipase C (PLC) inhibitors U73122 and neomycin, and phospholipase D (PLD) inhibitor 1-butanol significantly diminished HgCl2-induced cell death and H2O2 accumulation. 【Conclusion】 HgCl2 induces PCD exhibiting apoptotic-like features. The cell death process requires increased H2O2 production regulated by activation of protein phosphorylation and phospholipid signaling pathways.

Key words: tobacco, HgCl2, programmed cell death

[1]Zahir F, Rizwi S J, Haq S K, Khan R H. Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 2005, 20: 351-360.

[2]陆安详, 孙  江, 王纪华, 董文光, 韩  平, 张国光, 王开义, 潘立刚. 北京农田土壤重金属年际变化及其特征分析. 中国农业科学, 2011, 44(18): 3778-3789.

Lu A X, Sun J, Wang J H, Dong W G, Han P, Zhang G G, Wang K Y, Pan L G. Annual variability and characteristics analysis of heavy metals in agricultural soil of Beijing. Scientia Agricultura Sinica, 2011, 44(18): 3778-3789. (in Chinese)

[3]Siegel S M, Puerner N J, Speitel T W. Release of volatile mercury from vascular plants. Physiologia Plantarum, 1974, 32: 174-176.

[4]Bernier M, Popovic R, Carpentier R. Mercury inhibition at the donor side of photosystem II is reversed by chloride. FEBS Letters, 1993, 321(1): 19-23.

[5]Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P. The role of aquaporins in cellular and whole plant water balance. Biochimica et Biophysica Acta, 2000, 1465: 324-342.

[6]Cho U H, Park J O. Mercury-induced oxidative stress in tomato seedlings. Plant Science, 2000, 156: 1-9.

[7]孙  斌, 李多川, 慈小燕, 郭润芳, 王  颖. 小麦叶片β-1,3-葡聚糖酶的诱导、纯化与抗菌活性. 植物生理与分子生物学报, 2004, 30(4): 399-404.

Sun B, Li D C, Ci X Y, Guo R F, Wang Y. Induction, purification and antifungal activity of β-1, 3-glucanase from wheat leaves. Journal of Plant Physiology and Molecular Biology, 2004, 30(4): 399-404. (in Chinese)

[8]Steller H. Mechanisms and genes of cellular suicide. Science, 1995, 267: 1445-1449.

[9]Jones A M. Programmed cell death in development and defense. Plant Physiology, 2001, 125: 94-97.

[10]Zong W X, Thompson C B. Necrotic death as a cell fate. Genes & Development, 2006, 20: 1-15.

[11]Overmyer K, Brosché M, Kangasjärvi J. Reactive oxygen species and hormonal control of cell death. Trends in Plant Science, 2003, 8: 335-342.

[12]Zawoznik M S, Groppa M D, Tomaro M L, Benavides M P. Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Science, 2007, 173: 190-197.

[13]Yakimova E T, Kapchina-Toteva V M, Woltering E J. Signal transduction events in aluminum-induced cell death in tomato suspension cells. Journal of Plant Physiology, 2007, 164: 702-708.

[14]Yakimova E T, Kapchina-Toteva V M, Laarhoven L J, Harren F M, Woltering E J. Involvement of ethylene and lipid signaling in cadmium-induced programmed cell death in tomato suspension cells. Plant Physiology and Biochemistry, 2006, 44: 581-589.

[15]De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, Sanitá di Toppi L, Lo Schiavo F. Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiology, 2009, 150: 217-228.

[16]刘  菲, 刘  辉, 梁元存, 刘爱新, 魏芳芳, 林  琎. 核黄素诱导烟草悬浮细胞酚类物质和木质素的积累. 中国农业科学,2009, 42(9): 3230-3235.

Liu F, Liu H, Liang Y C, Liu A X, Wei F F, Lin J. Induction of phenolic compounds and lignin in cultured tobacco cells treated with riboflavin. Scientia Agricultura Sinica, 2009, 42(9): 3230-3235. (in Chinese)

[17]Binet M N, Humbert C, Lecourieux D, Vantard M, Pugin A. Disruption of microtubular cytoskeleton induced by cryptogein, an elicitor of hypersensitive response in tobacco cells. Plant Physiology, 2001, 125: 564-572.

[18]Bellincampi D, Dipierro N, Salvi G, Cervone F, De Lorenzo G. Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxine-regulated rolB gene expression in tobacco leaf explants. Plant Physiology, 2000, 122: 1379-1385.

[19]Kressel M, Groscurth P. Distinction of apoptotic and necrotic cell death by in situ labelling of fragmented DNA. Cell and Tissue Research, 1994, 278: 549-556.

[20]Yun L J, Chen W L. SA and ROS are involved in methyl salicylate- induced programmed cell death in Arabidopsis thaliana. Plant Cell Reports, 2011, 30: 1231-1239.

[21]Sharma S S, Dietz K. The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 2008, 14: 1360-1385.

[22]Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7: 405-410.

[23]Johnson S M, Doherty S J, Croy R R D. Biphasic superoxide generation in potato tubers. A self amplifying response to stress. Plant Physiology, 2003, 131: 1440-1449.

[24]Iannone M F, Rosales E P, Groppa M D, Benavides M P. Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium. Protoplasma, 2010, 245: 15-27.

[25]Terres M A, Dangl J L, Jones J D G. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(1): 517-522.

[26]Chou T S, Chao Y Y, Kao C H. Involvement of hydrogen peroxide in heat shock-and cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings. Journal of Plant Physiology, 2012, 169: 478-486.

[27]Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold D L, Polle A. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiology, 2001, 127: 887-898.

[28]Viard M P, Martin F, Pugin A, Ricci P, Blein J P. Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein. Plant Physiology, 1994, 104: 1245-1249.
[1] HE Lei,LU Kai,ZHAO ChunFang,YAO Shu,ZHOU LiHui,ZHAO Ling,CHEN Tao,ZHU Zhen,ZHAO QingYong,LIANG WenHua,WANG CaiLin,ZHU Li,ZHANG YaDong. Phenotypic Analysis and Gene Cloning of Rice Panicle Apical Abortion Mutant paa21 [J]. Scientia Agricultura Sinica, 2022, 55(24): 4781-4792.
[2] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[3] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[4] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[5] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[6] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[7] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
[8] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
[9] WEI YanXia,LI ZhuoRan,ZHANG Bin,YUAN YuJin,YU WeiWei,CHANG RuoKui,WANG YuanHong. Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02 [J]. Scientia Agricultura Sinica, 2021, 54(16): 3451-3460.
[10] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[11] XIANG ShunYu,WANG Jing,XIE ZhongYu,SHI Huan,CAO Zhe,JIANG Long,MA XiaoZhou,WANG DaiBin,ZHANG Shuai,HUANG Jin,SUN XianChao. Preparation of A Novel Silver Nanoparticle and Its Antifungal Mechanism Against Alternaria alternata [J]. Scientia Agricultura Sinica, 2020, 53(14): 2885-2896.
[12] LI FeiHong,HOU YingJun,LI XueHan,YU XinYi,QU ShenChun. Cloning and Function Analysis of Apple Gibberellin Oxidase Gene MdGA2ox8 [J]. Scientia Agricultura Sinica, 2018, 51(22): 4339-4351.
[13] PENG HaoRan, PAN Qi, WEI ZhouLing, PU YunDan, ZHANG YongZhi, WU GenTu, QING Ling, SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Tomato Resistance-Related Gene SlHin1 [J]. Scientia Agricultura Sinica, 2017, 50(7): 1242-1251.
[14] WEI ZhouLing, PENG HaoRan, PAN Qi, ZHANG YongZhi, PU YunDan, WU GenTu, QING Ling, SUN XianChao. Subcellular Localization of the Ribosome-Inactivating Protein α-MC and Its Antiviral Effect on TMV [J]. Scientia Agricultura Sinica, 2017, 50(5): 840-848.
[15] LIU ZiHan, SHI XiaoYi, YAN PengJiao, DUAN Yang, GENG XingXia, YE JiaLi, LI Sha, YANG XueTong, ZHANG GaoMing, JIA YuLin, ZHANG LingLi, SONG XiYue. Tapetal Programmed Cell Death, Antioxidant Response and Oxidative Stress in Wheat Anthers Associated with D2-type Cytoplasmic Male-sterility [J]. Scientia Agricultura Sinica, 2017, 50(21): 4071-4086.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!