Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (17): 3506-3514.doi: 10.3864/j.issn.0578-1752.2012.17.006

• PLANT PROTECTION • Previous Articles     Next Articles

Root and Leaf Infection as Revealed by Autofluorescent Reporter Protein GFP Labeled Bipolaris sorokiniana in Wheat

 YAN  Li-Min, WANG  Xiao-Ming, XU  Rong-Qi, DONG  Fang-Yang, LI  Hong-Jie   

  1. 1.河北科技师范学院生命科技学院,河北秦皇岛066004
    2.中国农业科学院作物科学研究所/农作物基因资源与基因改良国家重大科学工程,北京100081
    3.中国农业科学院生物技术研究所,北京 100081
  • Received:2011-12-29 Online:2012-09-01 Published:2012-03-05

Abstract: 【Objective】The objective of this study is to label Bipolaris sorokiniana, which is the causal agent of common root rot and leaf spot blotch of wheat (Triticum aestivum L.), with green fluorescent protein (GFP) for studying infection of B. sorokiniana on wheat roots and leaves, and to establish a direct and non-destructive method for in vivo observing interaction between pathogen and host plant. 【Method】 Gene gfp was transferred into B. sorokiniana strain Bs-1 via Agrobacterium tumefaciens-mediated transformation (ATMT). Based on analysis of fluorescence expression, PCR verification, genetic stability, growth parameters, and metabolism of extra cellular enzymes, a transformed strain Bs-GFP that resembled its wild-type strain, was chosen to investigate infection of B. sorokiniana on roots and leaves of wheat cultivar Aikang 58. 【Result】Bright green fluorescence was observed in hyphae and conidia of the transformant Bs-GFP. The amplification of the diagnostic bands with the gene-specific markers indicated that gfp was integrated into the genome of B. sorokiniana. Analysis of genetic stability and growth parameters demonstrated that gfp was inherited normally, and the growth rate and metabolism of extracellular enzymes were comparable to the wild type strain. The GFP-labeled strain Bs-GFP was able to incite symptoms on both underground and upperground parts of wheat plants, and the quantities of colonization (in terms of colony forming unit) in roots and basal stem tissues of wheat plants by Bs-GFP was similar as those by Bs-1. 【Conclusion】The B. sorokiniana strain expressing GFP obtained via ATMT can be used to directly monitor infection and colonization of the fungus on wheat. The results from this study will facilitate better understanding of the interactions between B. sorokiniana and wheat, as well other cereal crops.

Key words: Agrobacterium tumefaciens, Bipolaris sorokiniana (teleomorph Cochliobolus sativus), GFP (green fluorescence protein), genetic transformation

[1]Zillinsky F J. Common Diseases of Small Grain Cereals: A Guide to Identification. Mexico: CIMMYT, 1983: 141.

[2]Kumar J, Schäfer P, Hüchelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel K H. Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Molecular Plant Pathology, 2002, 3(4): 185-195.

[3]Mathre D E. Compendium of Barley Diseases. 2nd ed. St. Paul, Minnesota, USA: American Phytopathological Society, 1997.

[4]Wiese M V. Compendium of Wheat Diseases. 2nd ed. St. Paul, Minnesota, USA: American Phytopathological Society, 1987.

[5]Rohringer R, Kim W K, Samborski D J, Howes N K. Calcoflour: An optical brightener for fluorescence microscopy of fungal plant parasites in leaves. Phytopathology, 1977, 67(6): 808-810.

[6]Kumar J, Hückelhoven R, Beckhove U, Nagarajan S, Kogel K H. A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus). Phytopathology, 2001, 91(2): 127-133.

[7]Lorang J M, Tuori R P, Martinez J P, Sawyer T L, Redman R S, Rollins J A, Wolpert T J, Johnson K B, Rodriguez R J, Dickman M B, Ciuffetti L M. Green fluorescent protein is lighting up fungal biology. Applied and Environmental Microbiology, 2001, 67(5): 1987-1994.

[8]Liljeroth E, Jansson H B, Schäfer W. Transformation of Bipolaris sorokiniana with the GUS gene and use for studying fungal colonization of barley roots. Phytopathology, 1993, 83(12): 1484-1489.

[9]Mochizuki Y, Nakanishi H, Kodera Y, Ito S, Yamamura Y, Kato T, Hibi K, Akiyama S, Nakao A, Tatematsu M. TNF-α promotes progression of peritoneal metastasis as demonstrated using a green fluorescence protein (GFP)-tagged human gastric cancer cell line. Clinical and Experimental Metastasis, 2004, 21(1): 39-47.

[10]Ponappa T, Brzozowski A E, Finer J J. Transient expression and stable transformation of soybean using the jellyfish green fluorescent protein. Plant Cell Reports, 1999, 19(1): 6-12.

[11]Helber N, Requena N. Expression of the fluorescence markers DsRed and GFP fused to a nuclear localization signal in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 2008, 177(2): 537-548.

[12]Jensen D F, Schulz A. Exploitation of GFP-technology with filamentous fungi//Handbook of Fungal Biotechnology, New York: Marcel Dekker, 2004: 441-451.

[13]Oren L, Ezrati S, Cohen D, Sharon A. Early events in the Fusarium verticillioides-maize interaction characterized by using a green fluorescent protein-expressing transgenic isolate. Applied and Environmental Microbiology, 2003, 69(3): 1695-1701.

[14]Njoroge S M C, Vallad G E, Park S Y, Kang S, Koike S T, Bolda M, Burman P, Polonik W, Subbarao K V. Phenological and phytochemical changes correlate with differential interactions of Verticillium dahliae with broccoli and cauliflower. Phytopathology, 2011, 101: 523-534.

[15]Sesma A, Osbourn A E. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 2004, 431: 582-586.

[16]Mullins E D, Chen X, Romaine P, Raina R, Geiser D M, Kang S. Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology, 2001, 91(2): 173-180.

[17]Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas P J. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. The EMBO Journal, 1995, 14(13): 3206-3214.

[18]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4326.

[19]徐荣旗, 汪佳妮, 陈捷胤, 戴小枫. 棉花黄萎病菌T-DNA插入突变体表型特征和侧翼序列分析. 中国农业科学, 2010, 43(3): 489-496.

Xu R Q, Wang J N, Chen J Y, Dai X F. Analysis of T-DNA insertional flanking sequence and mutant phenotypic characteristics in Verticillium dahliae. Scientia Agricultura Sinica, 2010, 43(3): 489-496. (in Chinese)

[20]Dodman R L, Reinke J R. A selective medium for determining the population of viable conidia of Cochliobolus sativus in soil. Australian Journal of Agricultural Research, 1982, 33: 287-291.

[21]Sprague S J, Watt M, Kirkegaard J A, Howlett B J. Pathways of infection of Brassica napus roots by Leptosphaeria maculans. New Phytologist, 2007, 176(1): 211-222.

[22]Soboleski M R, Oaks J, Halford W P. Green fluorescent protein is a quantitative reporter of gene expression in individual eukaryotic cells. The FASEB Journal, 2005, 19(3): 440-442. [23]Sarrocco S, Mikkelsen L, Vergara M, Jensen D F, Lübeck M, Vannacci G. Histopathological studies of sclerotia of phytopathogenic fungi parasitized by a GFP transformed Trichoderma virens antagonistic strain. Mycological Research, 2006, 110(2): 179-187.

[24]Mikkelsen L, Sarrocco S, Lübeck M, Jensen D F. Expression of the red fluorescent protein DsRed-express in filamentous ascomycete fungi. FEMS Microbiology Letters, 2003, 223(1): 135-139.

[25]Keller S E, Sullivan T M, Chirtel S. Factors affecting the growth of Fusarium proliferatum and the production of fumonisin B1: oxygen and pH. Journal of Industrial Microbiology & Biotechnology, 1997, 19(4): 305-309.

[26]Jakobs S, Subramaniam V, Schonle A, Jovin T M, Hell S W. EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. FEBS Letters, 2000, 479(3): 131-135.

[27]Füchslin H P, Rüegg I, van der Meer J R, Egli T. Effect of integration of a GFP reporter gene on fitness of Ralstonia eutropha during growth with 2,4-dichlorophenoxyacetic acid. Environmental Microbiology, 2003, 5(10): 878-887.

[28]Dandie C E, Larrainzar E, Mark G L, O’Gara F, Morrissey J P. Establishment of DsRed.T3_S4T as an improved autofluorescent marker for microbial ecology application. Environmental Microbiology, 2005, 7(11): 1818-1825.
[1] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[2] DING Xi,ZHAO KaiXi,WANG YueJin. Expression of Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis and Its Effect on Resistance of Grape to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(2): 310-323.
[3] LIU MengQi,WU FengYing,WANG YueJin. Expression of Stilbene Synthase Gene and Resistance to Powdery Mildew Analysis of Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2019, 52(14): 2436-2449.
[4] YE MingWang, ZHANG ChunZhi, HUANG SanWen. Construction of High Efficient Genetic Transformation System for Diploid Potatoes [J]. Scientia Agricultura Sinica, 2018, 51(17): 3249-3257.
[5] LI Fang, DENG Zi-niu, ZHAO Ya, LI Da-zhi, DAI Su-ming. Construction and Transformation of RNAi Vector for Citrus tristeza virus Gene p23 [J]. Scientia Agricultura Sinica, 2016, 49(20): 3927-3933.
[6] LIU Rui, ZHANG Huan-Huan, CHEN Zhi-Xiong, SHAHID Muhammad Qasim, FU Xue-Lin, LIU Yao-Guang, LIU Xiang-Dong, LU Yong-Gen. Development of Drought-Tolerant Rice Germplasm by Screening and Transforming TAC Clones of Oryza officinalis Wall. [J]. Scientia Agricultura Sinica, 2014, 47(8): 1445-1457.
[7] XIN Yan-Hua-1, XIAO Zhao-Yan-1, YOU Lin-Feng-1, GUO Li-Qiong-1, 2 , LIN Jun-Fang-1, 2 . Heterologous Expression of Taxadiene Synthase Gene in Ganoderma lucidum [J]. Scientia Agricultura Sinica, 2014, 47(3): 546-552.
[8] HOU Wen-sheng, LIN Kang-xue, CHEN Pu, JIA Zhi-wei, ZHOU Yang, YU Yang, LIU Yan-hua. Establishment and Prospect of Efficient Transformation Systems for Soybean [J]. Scientia Agricultura Sinica, 2014, 47(21): 4198-4210.
[9] WANG Hai-Yan, LI Bao-Hua, ZHANG Qing-Ming, LI Gui-Fang, DONG Xiang-Li, WANG Cai-Xia. Transformation of Agrobacterium tumefaciens-Mediated Colletotrichum gloeosporioides and Identification of Transformants [J]. Scientia Agricultura Sinica, 2013, 46(9): 1799-1807.
[10] DU Kun, GAO Ya-Nan, KONG Yue-Qin, FAN Yun, WANG You-Ping. Effects of OsLTP Gene on Salt Tolerance of Transgenic Brassica napus [J]. Scientia Agricultura Sinica, 2013, 46(13): 2625-2632.
[11] XIE Chao, YANG Qing, SHI Ce, JUE Deng-Wei, ZHU Yan-Ping, LIU Shui-Ping. Cloning and Analysis of StLTPa7 from Solanum torvum [J]. Scientia Agricultura Sinica, 2012, 45(8): 1505-1512.
[12] WU Li, LI Yan-Jun, ZHANG Xin-Yu, WANG Ya-Qin, SUN Jie. Functional Analysis of Cyclophilin (GhCYP1) in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2012, 45(17): 3624-3631.
[13] FAN Su-Jie, WU Jun-Jiang, CHEN Chen, WANG Xin, JIANG Liang-Yu, WANG Jin-Sheng, LI Wen-Bin, XU Peng-Fei, ZHANG Shu-Zhen. Isolation and Functional Analysis of Resistance Gene SDR1 to Phytophthora sojae in Soybean [J]. Scientia Agricultura Sinica, 2012, 45(11): 2139-2146.
[14] LI Hao, ZHANG Wen, ZHAO Xu-Mian, REN Xue-Qin, ZHU Yuan-Di. Molecular Cloning of Isopentenyl Transferases Genes Family in Malus domestica Borkh. and a Preliminary Functional Analysis of MdIPT5a [J]. Scientia Agricultura Sinica, 2011, 44(19): 4029-4036.
[15] ZHU Li, LANG Zhi-Hong, LI Gui-Ying, HE Kang-Lai, YUE Tong-Qing, ZHANG Jie, HUANG Da-Fang. Introduction of Bt cry1Ah Gene into Sweet Sorghum (Sorghum bicolor L. Moench) by Agrobacterium tumefaciens-Mediated Transformation [J]. Scientia Agricultura Sinica, 2011, 44(10): 1989-1996.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!