Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (15): 3058-3067.doi: 10.3864/j.issn.0578-1752.2012.15.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Exogenous Nitric Oxide on Growth, Antioxidant System and Photosynthetic Characteristics in Seedling of Cotton Cultivar Under Chilling Injury Stress

 YANG  Mei-Sen, WANG  Ya-Fang, GAN  Xiu-Xia, LUO  Hong-Hai, ZHANG  Ya-Li, ZHANG  Wang-Feng   

  1. 石河子大学农学院/新疆兵团绿洲生态农业重点实验室,新疆石河子832003
  • Received:2011-12-31 Online:2012-08-01 Published:2012-05-14

Abstract: 【Objective】Cotton is a typical thermophilic crop. It is sensitive to low temperature stress, cold stress influenced greatly on cotton production, so it is of much improtance to explore the effects of exogenous NO donor (SNP) on cotton resistance ability.【Method】‘Xinluzao 13’ and ‘Xinluzao 33’ were used as materials in this experiment to investigate the effect of SNP(100 μmol•L-1) on growth, chlorophyll content, gas exchange parameters, cholorophyll fluorescence parameters and active oxygen metabolism in seedlings of cotton cultivar under chilling stress.【Result】 It was found that SNP had no significant influence on growth, H2O2, Pro, soluble protein and SOD, but improved the activities of POD, CAT, APX and GR significantly under normal growth conditions. SNP had no obvious influence on chlorophyll content, Pn, Ci, F0 and Fv/Fm, but increased Gs, Tr, ETR and ΦPSⅡ significantly. Under chilling stress, exogenous NO treatments significantly increased the growth rate, SOD, POD, CAT, APX and GR activities of leaves, but reduced H2O2 and MDA contents. Exogenous NO increased chlorophyll content, Pn, Gs, Tr, Fv/Fm, ETR and ΦPSⅡ, reduced Ci but increased NPQ, avoided excessive light damage and maintained higher PSⅡ activity.【Conclusion】Under chilling stress, exogenous NO application reduced the accumulation of H2O2 and MDA, and protected the stabilization of membrane via enhancing the antioxidant enzymes activities and the contents of antioxidants, and enhanced cold tolerance in cotton seedlings and alleviated chilling stress damage to PSII center.

Key words: cotton, nitric oxide, chilling injury, active oxygen metabolism, photosynthetic physiology

[1]马向丽, 魏小红, 龙瑞军, 崔文娟, 万引琳. 外源一氧化氮提高一年生黑麦草抗冷性机制. 生态学报, 2005, 25(6): 1269-1274.

Ma X L, Wei X H, Long R J, Cui W J, Wan Y L. Studies on mechanism of enhancing the chilling resistance of annual ryegrass by exogenous nitric oxide. Acta Ecologica Sinica, 2005, 25(6): 1269-1274. (in Chinese)

[2]吴锦程, 陈建琴, 梁 杰, 杨伟搏, 吴晶晶, 陈丽钦, 刘美琼, 陈丽平. 外源一氧化氮对低温胁迫下枇杷叶片AsA-GSH循环的影响. 应用生态学报, 2009, 20(6): 1395-1400.

Wu J C, Chen J Q, Liang J, Yang W B, Wu J J, Chen L Q, Liu M Q, Chen L P. Effect of exogenous NO on ascorbate-glutathione cycle in loquat leaves under temperature stress. Chinese Journal of Applied Ecology, 2009, 20(6): 1395-1400. (in Chinese)

[3]Shu H M, Zhou Z G, Xu N Y, Wang Y H, Zheng M. Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development. European Journal of Agronomy, 2009, 31(2): 61-68.

[4]Dong H Z, Li W J, Tang W, Li Z, Zhang D M, Niu Y H. Yield, quality and leaf senescence of cotton grown at varying sowing dates and plant densities in the Yellow River Valley of China. Field Crops Research, 2006, 98: 106-115.

[5]郭建平, 陈玥熤. 新疆棉花热量指数的均生函数预测模型. 干旱区资源与环境, 2010, 24(8): 175-179.

Guo J P, Chen Y Y. Mean generating function model for cotton heat index forecasting in Xinjiang. Journal of Arid Resources and Environment, 2010, 24(8): 175-179. (in Chinese)

[6]Musser R L, Thomas S A, Kramer P J. Short and long term effects of root and shoot chilling of ransom soybean. Plant Physiology, 1983, 73: 778-783.

[7]简令成. 植物抗寒机理研究的新进展. 植物学通报, 1992, 9(3): 17-22.

Jian L C. Advances of the studies on the mechanism of plant     cold hardiness. Chinese Bulletin of Botany, 1992, 9(3): 17-22. (in Chinese)

[8]Neill S J, Desikan R, Hancock J T. Nitric oxide signaling in plants. New Phytologist, 2003, 159: 11-35.

[9]Qiao W H, Fan L M. Nitric oxide signaling in plant responses to abiotic stresses. Journal of Integrative Plant Biology, 2008, 50(10): 1238-1246.

[10]刘建新, 胡浩斌, 王 鑫. 外源一氧化氮供体对镉胁迫下黑麦草幼苗活性氧代谢、光合作用和叶黄素循环的影响. 环境科学学报,2009, 29(3): 626-633.

Liu J X, Hu H B, Wang X. Effects of an exogenous nitric oxide donor on active oxygen metabolism, photosynthesis and the xanthophyll cycle in Ryegrass (Lolium perenne L.) seedlings under cadmium stress. Acta Scientiae Circumstantiae, 2009, 29(3): 626-633. (in Chinese)

[11]Rodríguez-Serrano M, Romero-Puertas M C, Zabalza A, Corpas F J, Gómez M, Del Río L A, Sandalio L M. Cadmium effect on oxidative metabolism of pea(Pisum sativum L.)roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ, 2006, 29(8): 1532-1544.

[12]Tian Q Y, Sun D H, Zhao M G, Zhang W H. Inhibition of nitric oxide synthase(NOS)underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytologist, 2007, 174: 322-331.

[13]Lamattina L, Beligni M V, Garcia M C. Method of enhancing the metabolic function and the growing conditions of plants and seeds. 2001, United States Patent, US6242384B.

[14]Neill S J, Desikan R, Desikan R, Clarke A, Hurst R D, Hancock J T. Hydrogen peroxide and nitric oxide as signaling molecules in plants. Journal of Experimental Botany, 2002, 53(372): 1237-1247.

[15]Zhao M G, Chen L, Zhang L L, Zhang W H. Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in arabidopsis. Plant Physiology, 2009, 151: 755-767.

[16]阮海华, 沈文飚, 叶茂炳, 徐朗莱. 一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应. 科学通报, 2001, 46(23): 1993-1997.

Ruan H H, Shen W B, Ye M B, Xu L L. Protective effects of nitric oxide on salt stress-induced oxidative damage to wheat (Trriticum aestivum L.) leaves. Chinese Science Bulletin, 2001, 46(23): 1993-1997. (in Chinese)

[17]Uchida A, Jagendorf A T, Hibino T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 2002, 163(3): 515-523.

[18]傅玮东. 终霜和春季低温冷害对新疆棉花播种期的影响. 干旱区资源与环境, 2001, 15(2): 38-43.

Fu W D. The influence of latest frost and microthermal damage in spring on the cotton’s seeding time. Journal of Arid Resources and Environment, 2001, 15(2): 38-43. (in Chinese)

[19]Pinheiro H A, DaMatta F M, Chaves A R M, Fontes E P B, Loureiro M E. Drought tolerance in relation to protection against oxidative stress in clones of coffea canephora subjected to long-term drought. Plant Science, 2004, 167: 1307-1314.

[20]张志良, 瞿伟菁, 李小方. 植物生理学实验指导. 第四版. 北京: 高等教育出版社, 2009.

Zhang Z L, Qu W Q, Li X F. Laboratory Guide of Plant Physiology. 4rd ed. Beijing: Higher Education Press, 2009. (in Chinese)

[21]张志刚, 尚庆茂. 低温、弱光及盐胁迫下辣椒叶片的光合特性. 中国农业科学, 2010, 43(1): 123-131.

Zhang Z G, Shang Q M. Photosynthetic characteristics of pepper leaves under low temperature, weak light and salt stress. Scientia Agricultura Sinica, 2010, 43(1): 123-131. (in Chinese)

[22]张少颖, 任小林, 程顺昌, 李善菊. 外源一氧化氮供体浸种对玉米种子萌发和幼苗生长的影响. 植物生理学通讯, 2004, 40(3): 309-310.

Zhang S Y, Ren X L, Cheng S C, Li S J. Effects of seed soaking with exogenous nitric oxide on the seed germination and the seedling growth of maize. Plant Physiology Communications, 2004, 40(3): 309-310. (in Chinese)

[23]Sharma P, Sharma N, Deswal R. The molecular biology of the low- temperature response in plants. Bioessays, 2005, 27(10): 1048-1059.

[24]Prasad T K, Anderson M P, Martin B A, Stewart C R. Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 1994, 6(1): 65-74.

[25]刘慧英, 朱祝军, 吕国华, 钱琼秋. 低温胁迫下西瓜嫁接苗的生理变化与耐冷性关系的研究. 中国农业科学, 2003, 36(11): 1325-1329.

Liu H Y, Zhu Z J, Lü G H, Qian Q Q. Chilling tolerance and physiological parameters as influenced by grafting in watermelon seedlings. Agricultural Sciences in China, 2003, 2(10): 1164-1169. (in English)

[26]吴锦程, 陈伟建, 蔡丽琴, 谢翠萍, 黄世杰, 林良津, 叶美兰. 外源NO 对低温胁迫下枇杷幼果抗氧化能力的影响. 林业科学, 2010, 46(9): 73-78.

Wu J C, Chen W J, Cai L Q, Xie C P, Huang S J, Lin L J, Ye M L. Effects of exogenous nitric oxide on anti-oxidation capacities in young loquat fruits under low temperature stress. Scientia Silvae Sinicae, 2010, 46(9): 73-78. (in Chinese)

[27]韩 冰, 贺超兴, 闫 妍, 郭世荣, 于贤昌. AMF对低温胁迫下黄瓜幼苗生长和叶片抗氧化系统的影响. 中国农业科学, 2011, 44(8): 1646-1653.

Han B, He C X, Yan Y, Gao S R, Yu X C. Effects of arbuscular mycorrhiza fungi on seedlings growth and antioxidant systems of leaves in cucumber under low temperature stress. Scientia Agricultura Sinica, 2011, 44(8): 1646-1653.(in Chinese)

[28]Xiang C B, Oliver D J. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. The Plant Cell, 1998, 10(9): 1539-1550.

[29]Li X G, Meng Q W, Jiang G Q, Zou Q. The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. Photosynthetica, 2003, 41(2): 259-265.

[30]许 楠, 孙广玉. 低温锻炼后桑树幼苗光合作用和抗氧化酶对冷胁迫的响应. 应用生态学报, 2009, 20(4): 761-766.

Xu N, Sun G Y. Responses of mulberry seedling photosynthesis and antioxidant enzymes to chilling stress after low-temperature acclimation. Chinese Journal of Applied Ecology, 2009, 20(4): 761-766. (in Chinese)

[31]敬 岩, 孙宝腾, 符建荣. 一氧化氮改善铁胁迫玉米光合组织结构及其活性. 植物营养与肥料学报, 2007, 13(5): 809-815.

Jing Y, Sun B T, Fu J R. Nitric oxide improves photosynthetic structure and activity in iron-deficient maize. Plant Nutrition and Fertilizer Science, 2007, 13(5):809-815. (in Chinese)

[32]王国莉, 郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响. 作物学报, 2007, 33(8): 1385-1389.

Wang G L, Guo Z F. Effects of phosphorus nutrient on photosynthetic characteristics in rice cultivars with different cold sensitivity. Acta Agronomica Sinica, 2007, 33(8): 1385-1389. (in Chinese)

[33]何 洁, 刘鸿先, 王以柔, 郭俊彦. 低温与植物的光合作用. 植物生理学通讯, 1986, 22(2): 1-6.

He J, Liu H X, Wang Y R, Guo J Y. Low temperature and photosynthesis of plants. Plant Physiology Communications, 1986, 22(2): 1-6. (in Chinese)

[34]樊怀福, 郭世荣, 焦彦生, 张润花, 李 娟. 外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响. 生态学报, 2007, 27(2): 546-553.

Fan H F, Guo S R, Jiao Y S, Zhang R H, Li J. The effects of exogenous nitric oxide on growth, active oxygen metabolism and photosynthetic characteristics in cucumber seedlings under NaCl stress. Acta Ecologica Sinica, 2007, 27(2): 546-553. (in Chinese)

[35]Van Kooten O, Snel J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 1990, 25: 147-150.

[36]Demmig B, Björkman O. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of high plants. Planta, 1987, 171(2): 171-184.

[37]Aro E M, Virgin I, Anderson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta, 1993, 1143:113-125.

[38]Ogren E. Prediction of photoinhibition of photosynthesis from measurements of fluorescence quenching components. Planta, 1991, 184(4): 538-544.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[7] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[8] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[9] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[10] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[11] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[12] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[13] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[14] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
[15] WEN Ming, LI MingHua, JIANG JiaLe, MA XueHua, LI RongWang, ZHAO WenQing, CUI Jing, LIU Yang, MA FuYu. Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(16): 3473-3487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!