Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (13): 2668-2675.doi: 10.3864/j.issn.0578-1752.2012.13.011

• HORTICULTURE • Previous Articles     Next Articles

Comparison of Gibberellin Acid Content and the Genes Relatived to GA Biosynthesis Between ‘Changfu 2’ Apple (Malus domestica Borkh.) and Its Spur Sport

 SONG  Yang, ZHANG  Yan-Min, LIU  Jin, WANG  Chuan-Zeng, LIU  Mei-Yan, FENG  Shou-Qian, CHEN  Xue-Sen   

  1. 山东农业大学园艺科学与工程学院/作物生物学国家重点实验室,山东泰安271018
  • Received:2011-12-28 Online:2012-07-01 Published:2012-02-29

Abstract: 【Objective】The relationship between internode length of shoots, endogenous hormones gibberellic acid (GA) and the structure and expression of genes related to GA synthesis in apple (Malus domestica Borkh.) is a basis for further exploration of the spur type development mechanism and breeding of cultivars of spur type apple. 【Method】 The shoots and leaves of ‘Changfu 2’ and its spur sport ‘Longfuduanzhi’ were used as experimental materials for measuring the content of GA and cloning the genes which involved in the GA synthesis pathway at the four time points days after flowering and researching the relationship between GA and the internode length of shoots at shoot development stage. 【Result】 The GA content was significantly different between the spur type apple and non-spur type apple on 80th day after flowering. The GA content was lower in spur type sport compared with in non-spur type apple varieties on 80th day after flowering. The sequences analysis showed that the cDNA sequences of GA20ox and KO, key genes involved in GA synthesis, were the same between ‘Longfuduanzhi’ and ‘Changfu 2’. The mutation, insertion and deletion were not appeared in GA20ox and KO. The real-time quantitative PCR analysis showed that the relative expression of GA20ox and KO were significantly different between ‘Longfuduanzhi’ and ‘Changfu 2’ on 20th and 80th day after flowering. The relative expression of GA20ox and KO was lower in spur type apple compared with non-spur type apple on 20th and 80th day after flowering. 【Conclusion】The research results showed that the difference of GA content and key genes expression of GA synthesis pathway were related to shoot internode length of spur sport apple. The lower GA content and genes involved in GA synthesis pathway were down-regulated expression which inhibited the normal development of spur sport apple shoots. This study has provided basic information for further exploration of the spur type development mechanism.

Key words: spur type apple, gibberellin acid, real-time PCR

[1]沈德绪. 果树育种学. 北京: 农业出版社, 1992: 79-91.

Shen D X. Fruit Breeding. Beijing: China Agricultural Press, 1992: 79-91. (in Chinese)

[2]沈德绪, 王元格, 陈力耕. 柑橘遗传育种学. 北京: 科学出版社, 1998: 159-192.

Shen D X, Wang Y G, Chen L G. Citrus Genetics and Breeding. Beijing: China Science Press, 1998: 159-192. (in Chinese)

[3]Meheriuk M. Maturity of spur and standard strains of ‘Mclntosh’ apples. HortScience, 1989, 24(6): 978-979.

[4]杨佩芳, 郝燕燕, 田彩芳. 苹果短枝型品种导管分子的解剖学研究. 园艺学报, 2000, 27(1): 52-54.

Yang P F, Hao Y Y, Tian C F. Studies on the anatomy the vessel member of spur-type apple. Acta Horticulturae Sinica, 2000, 27(1): 52-54. (in Chinese)

[5]张今今, 王跃进, 李荣旗. 苹果短枝型性状的RAPD研究. 农业生物技术学报, 2000, 8: 285-288.

Zhang J J, Wang Y J, Li R Q. Study on apple spur type sports using RAPD. Journal of Agricultural Biotechnology, 2000, 8(3): 285-288. (in Chinese)

[6]祝  军, 王  涛, 赵玉军, 张  文, 李晨光, 周爱琴.应用AFLP分子标记鉴定苹果品种. 园艺学报, 2000, 27(2): 102-106.

Zhu J, Wang T, Zhao Y J, Zhang W, Li C G, Zhou A Q. Identification of apple varieties with AFLP molecular marker. Acta Horticulturae Sinica, 2000, 27(2): 102-106. (in Chinese)

[7]Olszewski N, Sun T P, Gubler F. Gibberellin signaling: biosynthesis, catabolism, and response pathways. The Plant Cell, 2002, 14: S61-S80.

[8]Richards D E, King K E, Ait-ali T, Harberd N P. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 67-68.

[9]Schwechheimer C. Understanding gibberellic acid signaling-are we there yet? Current Opinion in Plant Biology, 2008, 11: 9-15.

[10]Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. The Plant Cell, 2009, 21: 1453-1472.

[11]Looney N E, Lane W D. Spur-type growth mutants of Micntosh apple: a review of their gentics, physiology and field performance. Acta Horticulturae, 1984, 146: 31-46.

[12]牛自勉, 王贤萍, 李  全, 陈  宏. 短枝红富士苹果结果特性的研究. 中国农业科学, 1996, 29(2): 45-51.

Niu Z M, Wang X P, Li Q, Chen H. A study on bearing habit in various spur-type strains of Red Fuji apple. Scientia Agricultura Sinica, 1996, 29(2): 45-51. (in Chinese)

[13]张玉萍, 牛自勉, 李  全. 苹果短枝型品种脱落酸含量与树体生长的研究. 山西农业大学学报, 1994, 14(2): 138-140.

Zhang Y P, Niu Z M, Li Q. A study on the correlation between ABA content and growth and development of spur-type variety of apple. Journal of Shanxi Agricultural University, 1994, 14(2): 138-140. (in Chinese)

[14]Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase from the long-day plant spinach. Proceedings of the National Academy of Sciences of the USA, 2002, 99: 9043-9048.

[15]Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. The DDF1 transcriptional activator up-regulates expression of a gibberellin- deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. The Plant Journal, 2008, 56: 613-626.

[16]Coles J P, Phillips A L, Croker S J, Garcia-Lepe R, Lewis M J, Hedden P. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase gene. The Plant Journal, 1999, 17: 547-556.

[17]Huang Y Y, Yang W L, Pei Z, Guo X L, Liu D C, Sun J Z, Zhang A M. The genes for gibberellin biosunthesis in wheat. Functional and Integrative Genomics, 2011. DOI 10.1007/s10142-011-0243-2.

[18]Schomburg F M, Bizzell C N, Lee D J, Zeevaart J A, Amasino R M. Overexpression of a novel class of gibberellin 2-oxidase decreases gibberellin levels and create dwarf plants. The Plant Cell, 2003, 15: 151-163.

[19]Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H. Genetic manipulation of gibberellin metabolism in transgenic rice. Nature Biotechnology, 2003, 21: 909-913.

[20]Busov V B, Meilan R, Pearce D W, Ma C, Rood S B, Strauss S H. Activation tagging of a dominant gibberellin catabolism gene (GA2-oxidase) from poplar that regulates tree stature. Plant Physiology, 2003, 132: 1283-1291.

[21]Cheng S, Puryear J, Cairney J. A simple and efficient method for isolation RNA from pine trees. Plant Molecular Biology Reporter, 1993, 11: 113-116.

[22]de Lucas M, Davière J M, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz J M, Lorrain S, Fankhauser C, Blázquez M A, Titarenko E, Part S. A molecular framework for light and gibberellin control of cell elongation. Nature, 2008, 451: 480-484.

[23]王丽琴, 唐 芳, 赵 飞, 束怀瑞. 苹果紧凑型品种和矮化砧木内源激素的变化. 园艺学报, 2002, 29(1): 5-8.

Wang L Q, Tang F, Zhao F, Shu H R. Effect of compact mutants and dwarfing rootstocks on endogenous hormone content of apple. Acta Horticulturae Sinica, 2002, 29(1): 5-8. (in Chinese)

[24]Talon M, Koomenff M, Zeevaart J A D. Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathway of the semidwarf ga4 and ga5 mutants. Proceedings of the National Academy of Sciences of the USA, 1990, 87: 7983-7987.

[25]Fu X, Harberd N P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 2003, 421: 740-743.

[26]Yao J L, Dong Y H, Morris B A M. Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proceedings of the National Academy of Sciences of the USA, 2001, 98: 1306-1311.

[27]Kobayashi S, Goto-Yamamoto N, Hirocika H. Retrotransposon- induced mutations in grape skin color. Science, 2004, 304: 982-982.

[28]Helliwell C A, Sheldon C C. Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proceedings of the National Academy of Sciences of the USA, 1998, 95(15): 9019-9024.

[29]Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. A mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 702.

[30]Jia Q J, Zhang J J, Westcott S, Zhang X Q, Bellgard M, Lance R, Li C D. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Functional and Integrative Genomics, 2009, 9: 255-262.

[31]Xiao Y H, Li D M, Yin M H, Li X B, Zhang M, Wang Y J, Dong J, Zhao J, Luo M, Luo X Y, Hou L, Hu L, Pei Y. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. Journal of Plant Physiology, 2010, 167: 829-837.
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[3] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[4] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[5] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[6] LI WenXue, XIAO RuiGang, LÜ MiaoMiao, DING Ning, SHI HuaRong, GU PeiWen. Establishment and Application of Real-Time PCR for Quantitatively Detecting Plasmopara viticola in Vitis vinifera [J]. Scientia Agricultura Sinica, 2019, 52(9): 1529-1540.
[7] BAI HuiYang, LU Geng, LU JunXing, GUAN Li, TANG Xin, ZHANG Tao. Cloning and Expression Analysis of Jasmonic Acid Carboxyl Methyltransferase Gene from Perilla frutescens [J]. Scientia Agricultura Sinica, 2019, 52(9): 1657-1666.
[8] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[9] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[10] BAI Hui, SONG ZhenJun, WANG YongFang, QUAN JianZhang, MA JiFang, LIU Lei, LI ZhiYong, DONG ZhiPing. Identification and Expression Analysis of MYB Transcription Factors Related to Rust Resistance in Foxtail Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4016-4026.
[11] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[12] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[13] XIE Jie,WANG Ming,DING HongYing,LI Qing,WANG WanXing,XIONG XingYao,QIN YuZhi. Expression and Structural Analysis of SC MI390-5p and Its Target Genes in Potato Response to Low Temperature [J]. Scientia Agricultura Sinica, 2019, 52(13): 2295-2308.
[14] ZHANG ShuangNa, LI ZhengNan, FAN XuDong, ZHANG ZunPing, REN Fang, HU GuoJun, DONG YaFeng. Establishment of RT-LAMP Assay for Detection of Apple chlorotic leaf spot virus (ACLSV) [J]. Scientia Agricultura Sinica, 2018, 51(9): 1706-1716.
[15] SUN BingXue,SHI YanXia,ZHU FaDI,XIE XueWen,CHAI ALi,LI BaoJu. Establishment of AS-real-time PCR for Quantitatively Detecting the H278R Allele in the SdhB Associated with Corynespora cassiicola in Cucumber [J]. Scientia Agricultura Sinica, 2018, 51(24): 4647-4658.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!