Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (5): 981-989.doi: 10.3864/j.issn.0578-1752.2012.05.020

• VETERINARY SCIENCE • Previous Articles     Next Articles

The Association Between the SLA Microsatellites Typing and the Immune Parameters of Introduced Pig Breeds

 YU  Hui, LIU  Rong-Hui, ZUO  Qi-Zhen, LI  Yan, LI  Hua   

  1. 1.佛山科学技术学院动物科学系,广东佛山 528231
    2.四川农业大学动物科技学院,四川雅安 625014
    3.开县畜牧兽医局,重庆 405400
    4.东莞畜牧研究所,广东东莞 511700
  • Received:2011-03-14 Online:2012-03-01 Published:2011-07-14

Abstract: 【Objective】 The polymorphisms and the haplotypes of the swine leukocyte antigen complex (SLA) were investigated in Landrace and Yorkshire pigs using microsatellites (MS). The association between haplotypes and immune parameters was analyzed in order to provide references for disease resistance breeding in pigs.【Method】The genetic diversity parameters were calculated by thirteen microsatellites, which were in SLA region, the haplotypes in class Ⅰ and class Ⅱ were typed by some selected microsatellites typing, and the association between haplotypes and immune parameters were studied by microsatellites in class Ⅰand class Ⅱ regions.【Result】The expected heterozygosity ( =0.70) and polymorphism information content ( =0.65) of Yorkshire pigs were higher than those( =0.67, =0.62)of Landrace pigs, respectively. The multiple comparison results of six haplotypes and immune parameters in SLA Ⅰ showed that the mean corpuscular hemoglobin concentration (MCHC) of H2 was higher than that of H3 (P<0.05) and H5 (P<0.01), respectively. The platelet distribution width (PDW) of H2 was lower than that of H3 (P<0.05). The results of multiple comparisons between twelve haplotypes and immune parameters in SLAⅡ showed that the mean of red blood cell count (RBC) of H1′ was lower than that of H6′ and H9′ (P<0.05), respectively. The value of lymphocytes ratio (LYM) of H1′ was lower than that of H7′ (P<0.05), and extremely lower than that of H6′, H9′ and H11′ (P<0.01), respectively. The mean of MCHC of H6′was lower than that of H7′ (P<0.05), H1′ and H11′ (P<0.01), while the value of MCHC of H9′ was lower than that of H1′, H7′ and H11′ (P<0.05), respectively. The mean corpuscular volume (MCV) of H9′ was lower than that of H1′, H6′ and H11′ (P<0.05) and extremely lower than that of H7′ (P<0.01), respectively. The value of monocytes ratio (MONO) of H11′ was significantly lower than that of H6′, H7′ (P<0.05) and H1′ (P<0.01), while the value of H6′, H7′and H9′ was lower than that of H1′ (P<0.05, P<0.01), respectively.【Conclusion】The polymorphisms of Yorkshire pigs were higher than those of Landrace pigs, and the associations were detected between some haplotypes of SLA-MS and immune parameters, which were PDW, MCHC, RBC, MCV, LYM and MONO. These results could be used in evaluation of health index in future.

Key words: SLA, microsatellite typing, haplotypes, principal component analysis, immune parameters

[1]于  辉, 李  彬, 李  华, 颜其贵. SLA与免疫抗病的研究进展. 中国畜牧杂志, 2009, 45(5): 60-64.

Yu H, Li B, Li H, Yan Q G. Advance in swine leukocyte antigen associated with immunity and disease resistance. Chinese Journal of Animal Science, 2009, 45(5): 60-64. (in Chinese)

[2]袁树楷, 王金勇, 谢和芳, 李  琴, 白小青. 猪抗病育种候选基因研究进展. 中国畜牧杂志, 2007, 43(15): 50-52.

Yuan S K, Wang J Y, Xie H F, Li Q, Bai X Q. Advances in candidate genes of porcine disease resistance. Chinese Journal of Animal Science, 2007, 43(15): 50-52. (in Chinese)

[3]Lunney J K, Chen H B. Genetic control of host resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Virus Research, 2010, 154(1/2): 161-169.

[4]Lunney J K. Advances in swine biomedical model genomics. International Journal of Biological Sciences, 2007, 3(3): 179-184.

[5]Wimmers K, Schellander K, Ponsuksili S. BF, HP, DQB and DRB are associated with haemolytic complement activity, acute phase protein reaction and antibody response in the pig. Veterinary Immunology and Immunopathology, 2004, 99(3/4): 215-228.

[6]Lumsden J S, Kennedy B W, Mallard B A, Wilkie B N. The influence of the swine major histocompatibility genes on antibody and cell-mediated immune responses to immunization with an aromatic- dependent mutant of Salmonella typhimurium. Canadian Journal of Veterinary Research, 1993, 57: 14-18.

[7]Gerner W, Denyer M S, Takamatsu H H, Wileman T E, Wiesmüller K H, Pfaff E, Saalmüller A. Identification of novel foot-and-mouth disease virus specific T-cell epitopes in c/c and d/d haplotype miniature swine. Virus Research, 2006, 121(2): 223-228.

[8]Chung H, McClure M C. Characterization of microsatellite loci in the SLA class I region. Genomics, 2011, 97(4): 223-234.

[9]Tanaka M, Ando A, Renard C, Chardon P, Domukai M, Okumura N, Awata T, Uenishi H. Development of dense microsatellite markers in the entire SLA region and evaluation of their polymorphisms in porcine breeds. Immunogenetics, 2005, 57(9): 690-696.

[10]Ho C S, Lunney J K, Franzo-Romain M H, Martens G W, Lee Y J, Lee J H, Wysocki M, Rowland R R, Smith D M. Molecular characterization of swine leucocyte antigen class I genes in outbred pig populations. Animal Genetics, 2009, 40(4): 468-478.

[11]Ho C S, Franzo-Romain M H, Lee Y J, Lee J H, Smith D M. Sequence-based characterization of swine leucocyte antigen alleles in commercially available porcine cell lines. International Journal of Immunogenetics, 2009, 36(4): 231-234.

[12]Ho C S, Martens G W, Amoss M S, Jr., Gomez-Raya L, Beattie C W, Smith D M. Swine leukocyte antigen (SLA) diversity in Sinclair and Hanford swine. Developmental and Comparative Immunology, 2010, 34(3): 250-257.

[13]Ho C S, Lunney J K, Lee J H, Franzo-Romain M H, Martens G W, Rowland R R, Smith D M. Molecular characterization of swine leucocyte antigen class II genes in outbred pig populations. Animal Genetics, 2010, 41(4): 428-432.

[14]Ando A, Uenishi H, Kawata H, Tanaka-Matsuda M, Shigenari A, Flori L, Chardon P, Lunney J K, Kulski J K, Inoko H. Microsatellite diversity and crossover regions within homozygous and heterozygous SLA haplotypes of different pig breeds. Immunogenetics, 2008, 60(7): 399-407.

[15]Yeom S C, Park C G, Lee B C, Lee W J. SLA typing using the PCR-SSP method and establishment of the SLA homozygote line in pedigreed SNU miniature pigs. Animal Science Journal, 2010, 81(2): 158-164.

[16]Soe O K, Ohba Y, Imaeda N, Nishii N, Takasu M, Yoshioka G, Kawata H, Shigenari A, Uenishi H, Inoko H, Ando A, Kitagawa H. Assignment of the SLA alleles and reproductive potential of selective breeding Duroc pig lines. Xenotransplantation, 2008, 15(6): 390-397.

[17]Gao Y, Flori L, Lecardonnel J, Esquerré D, Hu Z L, Teillaud A, Lemonnier G, Lefèvre F, Oswald I P, Rogel-Gaillard C. Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response. BMC Genomics, 2010, 11(292): 1-25.

[18]温立斌, 何孔旺, 杨汉春, 倪艳秀, 张雪寒, 俞正玉, 茅爱华. 类猪圆环病毒因子 P1 感染对猪红细胞的影响. 内蒙古农业科技, 2009, 2: 46-48.

Wen L B, He K W, Yang H C, Ni Y X, Zhang X H, Yu Z Y, Mao A H. Effect of porcine circovirus type 2-like agents p1 infection on porcine erythrocytes. Inner Mongolia Agricultural Science and Technology, 2009, 2: 46-48. (in Chinese)

[19]李洪涛, 顾为望, 袁  进, 吴清洪, 王万山, 林继红, 王纯耀. 实验用西藏小型猪原代和第一代间部分血液指标比较. 郑州大学学报: 医学版, 2008, 43(1): 63-65.

Li H T, Gu W W, Yuan J, Wu Q H, Wang W S, Lin J H, Wang C Y. A comparative medical study on some haemal parameters of the experimental Tibet mini-pigs, Journal of Zhengzhou University: Medical Sciences, 2008, 43(1): 63-65. (in Chinese)

[20]包文斌, 叶  兰, 潘章源, 朱  璟, 黄雪根, 华金第, 吴圣龙. 苏太猪FUT1基因M307位点多态性及其对部分免疫指标的遗传效应分析. 畜牧兽医学报, 2010, 41(10): 1219-1224.

Bao W B, Ye L, Pan Z Y, Zhu J, Huang X G, Hua J D, Wu S L. Polymorphism and genetic effect of FUT1 gene M307 on some immune parameters in Sutai pigs. Chinese Journal of Animal and Veterinary Sciences, 2010, 41(10): 1219-1224. (in Chinese)

[21]Nuñez Y, Ponz F, Gallego F J. Microsatellite-based genotyping of the swine lymphocyte alloantigens (SLA) in miniature pigs. Research in Veterinary Science, 2004, 77(1): 59-62.

[22]Ding X D, Simianer H, Zhang Q. A new method for haplotype inference including full-sib information. Genetics, 2007, 177(3): 1929-1940.

[23]Smith T P, Rohrer G A, Alexander L J, Troyer D L, Kirby-Dobbels K R, Janzen M A, Cornwell D L, Louis C F, Schook L B, Beattie C W. Directed integration of the physical and genetic linkage maps of swine chromosome 7 reveals that the SLA spans the centromere. Genome Research, 1995, 5(3): 259-271.

[24]Lunney J K, Ho C S, Wysocki M, Smith D M. Molecular genetics of the swine major histocompatibility complex, the SLA complex. Developmental and Comparative Immunology, 2009, 33(3): 362-374.

[25]Ho C S, Lunney J K, Ando A, Rogel-Gaillard C, Lee J H, Schook L B, Smith D M. Nomenclature for factors of the SLA system, update 2008. Tissue Antigens, 2009, 73(4): 307-315.

[26]李洪涛, 顾为望, 袁  进, 吴清洪, 王万山, 林继红, 杨海英, 赵  乐, 曾昭志. 亚热带气候环境下西藏小型猪部分血液生理生化指标的比较. 中国实验动物学报, 2006, 14(4): 311-314.

Li H T, Gu W W, Yuan J, Wu Q H, Wang W S, Lin J H, Yang H Y, Zhao Y, Zeng Z Z, Comparison of some blood physiological and biochemical parameters in Tibet mini-pigs raised in subtropical environment. Acta Laboratorium Animalis Scientia Sinica, 2006, 14(4): 311-314. (In chinese)

[27]刘江伟, 张永久, 李泽信, 许永华, 龙小平, 赵笑云, 李广生, 常德从. 长白仔猪血常规及生化指标正常值探讨. 中国比较医学杂志, 2007, 17(7): 393-394.

Liu J W, Zhang Y J, Li Z X, Xu Y H, Long X P, Zhao X Y, Li G S. Chang D C. Investigation on the normal values of blood routine and serum biochemistry in Chang-Bai piglet. Chinese Journal of Comparative Medicine, 2007, 17(7): 393-394. (in Chinese)
[1] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[4] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[5] HaiYu TAO,AiWu ZHANG,HaiYang PANG,XiaoYan KANG. Smart-Phone Application in Situ Grassland Biomass Estimation [J]. Scientia Agricultura Sinica, 2021, 54(5): 933-944.
[6] WANG Ping,ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai. The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence [J]. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276.
[7] CHEN Yuan,CAI He,LI Li,WANG LinJie,ZHONG Tao,ZHANG HongPing. Alternative Splicing of TNNT3 and Its Effect on the Differentiation of MuSCs in Goat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4466-4477.
[8] LIU YouChun,LIU WeiSheng,WANG XingDong,SUN Bin,LIU XiuLi,YANG YanMin,WEI Xin,YANG YuChun,ZHANG Duo,LIU Cheng,LI TianZhong. Identification of F1 Hybrids in Blueberry (Vaccinium corymbosum L.) Based on Specific-Locus Amplified Fragment Sequencing (SLAF-seq) [J]. Scientia Agricultura Sinica, 2021, 54(2): 370-378.
[9] WANG Ling,CAI Yi,WANG GuiChao,WANG Di,SHENG YunYan. Specific Length Amplified Fragment (SFLA) Sequencing Mapping Construction and QTL Analysis of Fruit Related Traits in Muskmelon [J]. Scientia Agricultura Sinica, 2021, 54(19): 4196-4206.
[10] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[11] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[12] WANG ShanShan,ZHAO ChenHui,LI HongLian,ZHANG BingBing,LIANG YingHai,SONG HongWei. Analysis of Fruit Aromatic Components of Ten Plum Germplasm Resources in Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(11): 2476-2486.
[13] ZHANG MeiQi,LI Yan,LI ShuJing,GAO YanXia,LI JianGuo,CAO YuFeng,LI QiuFeng. Effects of Dietary Energy Levels on Production Performance, Blood Index, Slaughter Performance and Meat Quality of Holstein Steers [J]. Scientia Agricultura Sinica, 2021, 54(1): 203-212.
[14] CHEN LiJing,CHEN Zhuo,LI Na,SUN YaWei,LI HongBo,SONG WenWen,ZHANG Yang,YAO Gang. Comparison of the Carcass and Beef Quality Traits with the Expression of the Lipid Metabolism Related Genes Between Xinjiang Brown Cattle and Angus Beef Cattle [J]. Scientia Agricultura Sinica, 2020, 53(22): 4700-4709.
[15] ZHU LingXiao,LIU LianTao,ZHANG YongJiang,SUN HongChun,ZHANG Ke,BAI ZhiYing,DONG HeZhong,LI CunDong. The Regulation and Evaluation Indexes Screening of Chemical Topping on Cotton’s Plant Architecture [J]. Scientia Agricultura Sinica, 2020, 53(20): 4152-4163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!