Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (13): 2690-2703.doi: 10.3864/j.issn.0578-1752.2012.13.013

• HORTICULTURE • Previous Articles     Next Articles

The cDNA Cloning and Analysis of Sequence Information and Quantitative Express of Chrysanthemum Rhythms Clock Output Gene CmGI (GIGANTEA)

 SUN  Xia, WANG  Xiu-Feng, ZHENG  Cheng-Shu, XING  Shi-Yan, SHU  Huai-Rui   

  1. 1.山东农业大学园艺科学与工程学院,山东泰安 271018
    2.山东农业大学林学院,山东泰安 271018
    3.作物生物学国家重点实验室,山东泰安 271018
    4.国家苹果工程技术中心,山东泰安 271018
  • Received:2011-12-18 Online:2012-07-01 Published:2012-03-08

Abstract: 【Objective】The cDNA sequence of chrysanthemum rhythms clock output gene GIGANTEA was cloned, and the bioinformatics of the sequence and the relative quantitative expression of mRNA were analyzed.【Method】 Polymerase chain reaction (PCR) combined with 5′RACE, and 3′RACE technology were used to clone the full length cDNA of chrysanthemum rhythms clock output gene CmGI,analysis of sequence of nucleotides and code of protein was made by using the software of bioinformatics. Protein structure prediction of 3D modeling was made by using the online modeling software. The relative quantitative expression analysis of CmGI was conducted by real-time quantitative fluorescence PCR technology and 2-△△Ct method. 【Result】The cDNA sequence of GIGANTEA was cloned from chrysanthemum ‘Jniba’, the full-length cDNA was 3 461 bp, open reading frame (ORF ) was 3 453 bp, and encoded 1 150 amino acids. Sequence analysis showed that the genetic code of protein was homologous with plant rhythms clock output gene GIGANTEA, named CmGI gene. The sequence was submitted to GenBank, and the registration number is JQ043439. Sequence alignment displayed that it was a similarity of 76% and 75% with GIGANTEA of Vitis vinifera,Ricinus communis, respectively. The phylogenetic tree showed that chrysanthemum CmGI and Arabidopsis thaliana GIGANTEA are closest in molecular evolution distance, followed by Brassica rapa GIGANTEA. It was speculated that CmGI protein has six transmembrane spiral across a cell membrane many times. They are transcription factors, located in the nucleus and it is a non-secretory protein. They do not have a signal peptide. CmGI 3D structure modeling projections show that the protein core structure accords with the transcription factors and the function of the common DNA combining domain HTH and HLH. Fluorescent relative quantitative analysis shows that the expression patterns of chrysanthemum CmGI are circadian rhythms expression. At different flower bud differentiation stage, the CmGI gene in the leaf blade mRNA level is different, two peak values were appeared in the flower bud differentiation start-up and floret primordia middle differentiation periods. The tissue culture plantlets leaves and buds under long-day conditions, during alabastrum period are all trace expression and was in the order of leaves>tongue shape flower>tubular flowers during flowers blooming period. 【Conclusion】Rhythms clock output gene CmGI was cloned from chrysanthemum, further research on this gene will help exploration of photoperiod pathway of the flower of chrysanthemum molecular control mechanism and could be used as the target gene of molecular breeding of flowering phase.

Key words: Chrysanthemum morifolium, flower bud differentiation, rhythm clock output gene CmGI, quantitative expression

[1]Tseng T S, Salomé P A, McClung C R, Olszewski N E.  SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. The Plant Cell, 2004,16(6):1550-1563.

[2]Günl M, Liew E F, David K, Putterill J. Analysis of a post- translational steroid induction system for GIGANTEA in Arabidopsis BMC Plant Biology, 2009, 9:141 doi:10.1186/1471-2229-9-141.

[3]彭凌涛. 控制拟南芥和水稻开花时间光周期途径的分子机制. 植物生理学通讯, 2006, 42(6): 1021-1031.            

Peng L T. Molecular mechanism of flowering time controlling photoperiod pathway in Arabidopsis and rice. Plant Physiology Communications, 2006, 42(6): 1021-1031. (in Chinese)

[4]邵寒霜, 李继红, 郑学勤, 陈守才. 拟南芥LFY cDNA的克隆及转化菊花的研究. 植物学报, 1999, 41(3): 268-271.

Shao H S, Li J H, Zheng X Q, Chen S C. Cloning of the LFY cDNA from Arabidopsis thaliana and its transformation to Chrysanthemum morifolium. Acta Botanica Sinica, 1999, 41(3): 268-271. (in Chinese)

[5]皮  伟, 李名扬. 根癌农杆菌介导FPF1基因转化菊花的研究. 西南大学学报: 自然科学版, 2007, 29(4): 70-73.   

Pi W, Li M Y. Preliminary studies on transgenic chrysanthemum with FPF1 gene mediated by Agrobactrium tumefaciens. Journal of Touthwest University: Natural Science Edition, 2007, 29(4): 70-73. (in Chinese)

[6]吕晋慧, 吴月亮, 孙  磊, 张启翔. AP1基因转化地被菊品种玉人面的研究. 林业科学, 2007, 43(9): 128-135.     

Lü J H, Wu Y L, Sun L, Zhang Q X. Transformation of Chrysanthemum morifolium cv. ‘Yurenmian’ with AP1 gene mediated by Agrobacterium tumefaciens. Scientia Silvae Sinicae, 2007, 43(9): 128-135. (in Chinese)

[7]姜 丹, 梁建丽, 陈晓丽, 洪 波, 贾文锁, 赵梁军. 拟南芥花期基因FT 转化切花菊′神马′. 园艺学报, 2010, 37(3): 441-448.

Jiang D, Liang J L, Chen X L, Hong B, Jia W S, Zhao L J. Transformation of Arabidopsis flowering gene FT to from cut chrysanthemum′Jinba′ by agrobacterium mediate. Acta Horticulturae Sinica, 2010, 37(3): 441-448. (in Chinese)

[8]Bey M, Stueber K, Fellenberg K, Schwarz-Sommer Z, Sommer H, Saedler H. Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. The Plant Cell, 2004, 16(12): 3197-3215.

[9]Chen S M, Miao H B, Chen F D, Jiang B B, Lu J G, Fang W M. Analysis of expressed sequence tags (ESTs) collected from the inflorescence of chrysanthemum. Plant Molecular Biology Reporter, 2009, 27: 503-510.

[10]潘才博, 张启翔, 潘会堂, 孙  明. 菊花FT类似基因的克隆与表达分析. 园艺学报, 2010, 37(5): 769-776.                  

Pan C B, Zhang Q X, Pan H T, Sun M. Clone and expression analysis of FLOWERING LOCUST in Chrysanthemum morifolium Ramat. Acta Horticulturae Sinica, 2010, 37(5): 769-776. (in Chinese)

[11]田素波, 林桂玉, 郑成淑, 孙  霞, 任洪艳, 温立柱. 菊花花发育基因CmCO和CmFT的克隆与表达分析. 园艺学报, 2011, 38(6): 1129-1138.

Tian S B, Lin G Y, Zheng C S ,Sun X, Ren H Y,  Wen L Z. Cloning and expression of CmCO and CmFT of floral development genes in chrysanthemum. Acta Horticulturae Sinica, 2011, 38(6): 1129-1138. (in Chinese)

[12]Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature, 2003, 422:719-722.

[13]杨  娜, 郭维明, 陈发棣, 房伟民. 光周期对秋菊品种′神马′花芽分化和开花的影响. 园艺学报, 2007, 34(4) : 965-972.         

Yang N, Guo W M, Chen F D, Fang W M. Effects of photoperiod on floral bud differentiation and flowering of Chrysanthemum morifolium ′Jinba′. Acta Horticulturae Sinica, 2007, 34(4): 965-972. (in Chinese)

[14]林桂玉, 黄在范, 张翠华, 郑成淑. 菊花花芽分化期超微弱发光及生理代谢的变化. 园艺学报, 2008, 35(12): 1819-1824.  

Lin G Y, Huang Z F, Zhang C H, Zheng C S. Changes in ultraweak luminescence intensity, respiration rate and physiological metabolism of chrysanthemum during floral diferentiation. Acta Horticulturae Sinica, 2008, 35(12): 1819-1824.(in Chinese)

[15]王正荣. 时间生物学. 北京: 科学出版社, 2006: 63-196.

Wang Z R. Chronobiology. Beijing: Science Press, 2006: 63-196. (in Chinese)

[16]Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 2010,5: 725-738.

[17]Huq E, Tepperman J M, Quail P H. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 200, 97 (17): 9789-9794.

[18]Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. The Plant Cell, 2005,17(8):2255-2270.

[19]Abe M, Fujiwara M, Kurotani K, Yokoi S, Shimamoto K. Identification of dynamin as an interactor of rice GIGANTEA by tandem affinity purification (TAP). Plant Cell Physiology,2008, 49: 420-432.

[20]Kim W Y, Fujiwara S, Suh S S, Kim J, Kim Y, Han L, David K, Putterill J, Nam H G, Somers D E. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature, 2007, 449(7160):356-360.

[21]Cao S, Ye M, Jiang S. Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Reports, 2005, 24(11):683-690.

[22]Paltiel J, Amin R, Gover A, Ori N, Samach A. Novel roles for GIGANTEA revealed under environmental conditions that modify its expression in Arabidopsis and Medicago truncatula. Planta, 2006, 224(6):1255-1268.

[23]Gould P D, Locke J C, Larue C, Southern M M, Davis S J, Hanano S, Moyle R, Milich R, Putterill J, Millar A J, Hall A. The molecular basis of temperature compensation in the Arabidopsis circadian clock. The Plant Cell, 2006, 18(5):1177-1187.

[24]Sawa M, Nusinow D A, Kay S A, Imaizumi T.  FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science, 2007, 318(5848):261-265.

[25]Imaizumi T, Schultz T F, Harmon F G. FKF1, F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005, 309 (5732): 293-297.

[26]Sawa M, Kay S A. GIGANTEA directly activates flowering Locus T in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(28): 11698-11703.
[1] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[2] DU Qing,CHEN Ping,LIU ShanShan,LUO Kai,ZHENG BenChuan,YANG Huan,HE Shun,YANG WenYu,YONG TaiWen. Effect of Field Microclimate on the Difference of Soybean Flower Morphology Under Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2021, 54(13): 2746-2758.
[3] WEN LiZhu, SUN Xia, FAN HongMei, GUO YunHui, YU YuanYuan, REN Hong, WANG WenLi, ZHENG ChengShu. Cloning and Functional Verification of AINTEGUMENTA Gene in Chrysanthemum [J]. Scientia Agricultura Sinica, 2018, 51(9): 1771-1782.
[4] GUO YunHui, YU YuanYuan, WEN LiZhu, SUN CuiHui, SUN XianZhi, WANG WenLi, SUN Xia, ZHENG ChengShu. Molecular Basis of the Effects of Nitrate Signal on Root Morphological Structure Changes of Chrysanthemum [J]. Scientia Agricultura Sinica, 2017, 50(9): 1684-1693.
[5] WU Meng-jing, XU Qing-ye, LIU Ya, SHI Xing-rong, SHEN Qi-da, YANG Meng-meng, WANG Shi-gui, TANG Bin. The Super Cooling Point Change of Harmonia axyridis Under   Low Temperature Stress and Its Cold-Resistance Genes’   Expression Analysis [J]. Scientia Agricultura Sinica, 2016, 49(4): 677-685.
[6] HAN Shuang, CHEN Su-mei, JIANG Jia-fu, FANG Wei-min, GUAN Zhi-yong, CHEN Fa-di. Hormone Levels and Gene Expression Analysis of Chrysanthemum Cultivar ‘Puma Sunny’ Under Low Light Intensity [J]. Scientia Agricultura Sinica, 2015, 48(2): 324-333.
[7] WANG Hai-bo, ZHAO Jun-quan, WANG Xiao-di, SHI Xiang-bin, WANG Bao-liang, ZHENG Xiao-cui, LIU Feng-zhi. The Influence of Changes of Endogenous Hormones in Shoot on the Grapes Flower Bud Differentiation in Greenhouse [J]. Scientia Agricultura Sinica, 2014, 47(23): 4695-4705.
[8] WANG Liang, WANG Chu-Chu, JIANG Jia-Fu, CHEN Su-Mei, FANG Wei-Min, TENG Nian-Jun, GUAN Zhi-Yong, LIAO Yuan, CHEN Fa-Di. Interspecific Hybridization Between Chrysanthemum morifolium ‘Nannongyinshan’ and C. zawadskii and Identification of Waterlogging Tolerance of Their Hybrid [J]. Scientia Agricultura Sinica, 2013, 46(20): 4328-4335.
[9] HUANG He, WANG Shun-Li, DAI Si-Lan. cDNA-AFLP Analysis of White Rust Response Genes in Chrysanthemum morifolium ‘Zihe’ [J]. Scientia Agricultura Sinica, 2012, 45(5): 926-935.
[10] FENG Feng,YANG Ji-shuang. Relationship Between Floral Bud Differentiation and Endogenous Hormones in Autumn-Cutting Chrysanthemum morifolium ‘Jinba’
[J]. Scientia Agricultura Sinica, 2011, 44(3): 552-561 .
[11] ZHANG Fei,CHEN Fa-di,FANG Wei-min,CHEN Su-mei,LI Feng-tong
.

Heterosis and Mixed Genetic Analysis of Inflorescence Traits of Chrysanthemum

[J]. Scientia Agricultura Sinica, 2010, 43(14): 2953-2961 .
[12] . Effects of Growth Age on Flower Bud Differentiation and Quality of Cut Chrysanthemum ‘Jinba’ [J]. Scientia Agricultura Sinica, 2008, 41(6): 1755-1760 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!