Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (2): 275-282.doi: 10.3864/j.issn.0578-1752.2012.02.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Soil Microbial Biomass N Turnover After Long-Term Fertilization in Paddy Field

 LU Mei-Rong , LI  Zhong-Pei, LIU  Ming, JIANG  Chun-Yu, CHE  Yu-Ping   

  1. 1.中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,南京 210008
  • Received:2011-01-27 Online:2012-01-15 Published:2011-04-18

Abstract: 【Objective】Soil microbial biomass plays an important role as a dynamic sink of nutrients. Soil microbial biomass turnover was evaluated after long-term fertilizer application to understand the influence of fertilization on nutrients cycling and nutrients available for plant uptake.【Method】Using soil samples taken from long-term fertilization field of N, P, K fertilizers, organic manure cycling or half amount of rice straw, soil microbial biomass, microbial biomass turnover and grain yield of rice (Oriza sativa L.) under fertilization were determined. 【Result】P fertilizer application increased soil microbial biomass N and C, microbial biomass N turnover and grain yield by 13.2%, 33.1%, 31.2% and 173.4% averagely compared to P fertilizer-omitted treatments. Organic manure application only increased soil microbial biomass N and C, and grain yield by 36.1%, 28.1% and 68.1% , and decreased soil microbial biomass N turnover by 4.3% averagely compared to CK. Incorporation of inorganic and organic fertilizer increased soil microbial biomass N and C, microbial biomass N turnover and grain yield, NPKC and NPKS treatments increased respectively by 40.1%, 26.3%, 177.1%, 204.1% and 36.1%, 20.9%, 192.9%, 203.3% compared to CK.【Conclusion】Incorporation of inorganic and organic fertilizers increased soil available nutrients sink, soil nutrients cycling and nutrients available for plant uptake to high soil productivity.

Key words: long-term fertilizer application, soil microbial biomass, microbial biomass N turnover, rice yield

[1]Gregorich E G, Liang B C, Drury C F, Mackenzie A F, McGill W B. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agricultural soils. Soil Biology and Biochemistry, 2000, 32: 581-587. 

[2]Goyal S, Mishra M M, Dhankar S S, Kapoor K K, Batra R. Microbial biomass turnover and enzyme activities following the application of farmyard manure to field soils with and without previous long-term applications. Biology and Fertility of Soils, 1993, 15: 60-64.

[3]陈国潮, 何振立, 黄昌勇. 红壤微生物生物量C周转及其研究. 土壤学报, 2002, 39(2): 152-160.

Chen G C, He Z L, Huang C Y. Turnover of microbial biomass C in red soils and its significance in soil fertility evaluation. Acta Pedologica Sinica, 2002, 39(2): 152-160. (in Chinese)

[4]van Veen J A, Ladd J N, Frissel M J. Modelling C and N turnover through the microbial biomass in soil. Plant and Soils, 1984, 76: 257-274.

[5]Jenkinson D S, Parry L C. The nitrogen cycle in the broadbalk wheat experiment: A model for the turnover of nitrogen through the soil microbial biomass. Soil Biology and Biochemistry, 1989, 21: 535-541.

[6]Joergensen R G, Meyer B, Mueller T. Time-course of the soil microbial biomass under wheat : one year field study. Soil Biology and Biochemistry, 1994, 26: 987-994.

[7]吴金水, 肖和艾. 土壤微生物生物量碳的表观周转时间测定方法. 土壤学报, 2004, 41(3): 401-407.

Wu J S, Xiao H A. Measuring the gross turnover time of soil microbial biomass C under incubation. Acta Pedologica Sinica, 2004, 41(3): 401-407. (in Chinese)

[8]van Veen J A, Ladd J N, Amato M. Turnover of carbon and nitrogen through the microbial biomass in sandy loam and a clay soil incubated with [14C(U)] glucose and [15N] (NH4)2SO4 under different moisture regimes. Soil Biology and Biochemistry, 1985, 17: 747-756.

[9]Sakamoto K, Hodono N. Turnover time of microbial biomass carbon in Japanese upland soils with different textures. Soil Science and Plant Nutrition, 2000, 46: 483-490.

[10]Perelo L W, Munch J C. Microbial immobilisation and turnover of 13C labelled substrates in two arable soils under ?eld and laboratory conditions. Soil Biology and Biochemistry, 2005, 37: 2263-2272.

[11]姚槐应, 何振立, 黄昌勇. 红壤微生物量氮的周转期及其研究意 义. 土壤学报, 1999, 36(3): 387-394.

Yao H Y, He Z L, Huang C Y. Turnover period of microbial biomass nitrogen in red soils and its significance in soil fertility evaluation. Acta Pedologica Sinica, 1999, 36(3): 387-394. (in Chinese)

[12]McGill W B, Cannon K R, Robertson J A, Cook F D. Dynamics of soil microbial biomass and water soluble organic C in Breton L after 50 years of cropping to two rotations. Canadian Journal of Soil Science, 1986, 66: 1-19.

[13]宇万太, 姜子绍, 周  桦, 马  强. 不同土地利用方式对潮棕壤微生物量碳及其周转率的影响. 生态学杂志, 2008, 27(8): 1302-1306.

Yu W T, Jiang Z S, Zhou H, Ma Q. Effect of different land use patterns on soil microbial biomass carbon and its turnover rate in an aquic soil. Chinese Journal of Ecology, 2008, 27(8): 1302-1306. (in Chinese)

[14]王晔青, 韩晓日, 马玲玲, 王玲莉, 赵立勇, 李  鑫. 长期不同施肥对棕壤微生物量磷及其周转的影响. 植物营养与肥料学报, 2008, 14(2): 322-327.

Wang Y Q, Han X R, Ma L L, Wang L L, Zhao L Y, Li X. Effect of long-term fertilization on the content and turnover of soil microbial biomass P. Plant Nutrition and Fertilizer Science, 2008, 14(2): 322-327. (in Chinese)

[15]高云超, 朱文珊, 陈文新. 土壤微生物生物量周转的估算. 生态学杂志, 1993, 12(6): 6-10.

Gao Y C, Zhu W S, Chen W X. Estimation for biomass and turnover of soil microorganisms. Chinese Journal of Ecology, 1993, 12(6): 6-10. (in Chinese)

[16]洪坚平, 谢英荷, Markus Kleber, Karl Stahr. 德国西南部惠格兰牧草区土壤微生物生物量的研究. 生态学报, 1997, 17(5): 493-496.

Hong J P, Xie Y h, Kleber M, Stahr K. Studies on soil microbial biomass in grassland region of southwestern germany. Acta Ecologica Sinica, 1997, 17(5): 493-496. (in Chinese)

[17]史  奕, 李德文, 孟凡祥, 陈  欣. 不同耕作和轮作下潮棕壤微生物生物量及周转特征. 农业系统科学与综合研究, 2006, 22(3): 221-224.

Shi Y, Li D W, Meng F X, Chen X. Characteristics of turnover and soil microbial biomass in meadow brown soil under different rotation and tillage systems. System Sciences and Comprehensive Studies in Agriculture, 2006, 22(3): 221-224. (in Chinese)

[18]Lou Y S, Li Z P, Zhang T L. Carbon dioxide flux in a subtropical agricultural soil of China. Water, Air and Soil Pollution, 2003, 149: 281-293.

[19]曾江海. 长期定位试验研究及其生态学意义. 资源生态环境网络研究动态, 1995, 6(1): 24-30.

Zeng J H. Long-term research and its significance. Network Research Tendency of Resources, Ecology and Environment, 1995, 6(1): 24-30. (in Chinese)

[20]姚槐应, 何振立, 陈国潮, 黄昌勇. 红壤微生物量在土壤-黑麦草系统中的肥力意义. 应用生态学报, 1999, 10(6): 725-728.

Yao H Y, He Z L, Chen G C, Huang C Y. Fertility significance of microbial biomass in red soil ryegrass system. Chinese Journal of Applied Ecology, 1999, 10(6): 725-728. (in Chinese)

[21]Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring microbial biomass C. Soil Biology and Biochemistry, 1987, 19: 703-707.

[22]Marinari S, Masciandaro G, Ceccanti B, Grego S. Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresource Technology, 2000, 72: 9-17.

[23]Masto R E, Chhonkar P K, Singh D, Patra A K. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol. Soil Biology and Biochemistry, 2006, 38: 1577-1582.

[24]Plaza C, Hernández D, García-Gil J C, Polo A. Microbial activity in pig slurry-amended soils under semiarid conditions. Soil Biology and Biochemistry, 2004, 36: 1577-1585.

[25]Nayak D R, Babu Y J, Adhya T K. Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition. Soil Biology and Biochemistry, 2007, 39: 1897-1906.

[26]Dawe D, Dobermann A, Moya P, Abdulrachman S, Singh B, Lal P, Li S Y, Lin B, Panaullah G, Sariam O, Singh Y, Swarup A, Tan P S, Zhen Q X. How widespread are yield declines in long-term rice experiments in Asia? Field Crops Research, 2000, 66: 175-193.

[27]Chu H Y, Lin X G, Fujii T, Morimoto S, Yagi K, Hu J L, Zhang J B. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology and Biochemistry, 2007, 39: 2971-2976.

[28]Zhong W H, Cai Z C. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Applied Soil Ecology, 2007, 36: 84-91.

[29]Gu Y F, Zhang X P, Tu S H, Lindström K. Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping. European Journal of Soil Biology, 2009, 45: 239-246.

[30]Van Veen J A, Paul E A. Organic carbon dynamics in grassland soils 1. Background information and computer simulation. Canadian Journal of Soil Science, 1981, 61: 185-201.

[31]黄东风, 王  果, 李卫华, 邱孝煊. 不同施肥模式对蔬菜生长、氮肥利用及菜地氮流失的影响. 应用生态学报, 2009, 20(3): 631-638.

Huang D F, Wang G, Li W H, Qiu X X. Effects of different fertilization modes on vegetable growth, fertilizer nitrogen utilization, and nitrogen loss from vegetable field. Chinese Journal of Applied Ecology, 2009, 20(3): 631-638. (in Chinese)

[32]黄绍敏, 宝德俊, 皇甫湘荣, 张夫道, 赵秉强, 李  民. 长期施用有机和无机肥对潮土氮素平衡与去向的影响. 植物营养与肥料学报, 2006, 12(4): 479-484.

Huang S M, Bao D J, Huangfu X R, Zhang F D, Zhao B Q, Li M. Effect of long term fertilizers and organic inputs on balance and fate of nitrogen in fluvo-aquic soil. Plant Nutrition and Fertilizer Science, 2006, 12(4): 479-484. (in Chinese)

[33]鲁彩艳, 马  建, 陈  欣, 张旭东, 史  奕, 赵牧秋, 迟光宇. 不同施肥处理对连续三季作物氮肥利用率及其分配与去向的影响. 农业环境科学学报, 2010, 29(2): 400-406.

Lu C Y, Ma J, Chen X, Zhang X D, Shi Y, Zhao M Q, Chi G Y. Effect of N-fertilization on the use efficiency, distribution and fate of labeled N fertilizer in soil-plant systems over three continuous crop cultivations. Journal of Agro-Environment Science, 2010, 29(2): 400-406. (in Chinese)

[34]Kouno K, Wu J, Brookes P C. Turnover of biomass C and P in soil following incorporation of glucose or ryegrass. Soil Biology and Biochemistry, 2002, 34: 617-622.

[35]郎晓峰, 徐阳春, 沈其荣. 不同有机无机复混肥对土壤供氮和玉米生长的影响. 生态与农村环境学报, 2008, 24(3): 33-38.

Lang X F, Xu Y C, Shen Q R. Effect of formation of organic-inorganic mixed fertilizers on soil N supply and growth of maize. Journal of Ecology and Rural Environment, 2008, 24(3): 33-38. (in Chinese)

[36]管建新, 王伯仁, 李冬初. 化肥有机肥配合对水稻产量和氮素利用的影响. 中国农学通报, 2009, 25(11): 88-92.

Guan J X, Wang B, Li D C. Effect of chemical fertilizer applied combing with organic manure on yield of rice and nitrogen using efficiency. Chinese Agricultural Science Bulletin, 2009, 25(11): 88-92. (in Chinese)
[1] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[2] YanLing LIU,Yu LI,Yan ZHANG,YaRong ZHANG,XingCheng HUANG,Meng ZHANG,WenAn ZHANG,TaiMing JIANG. Characteristics of Microbial Biomass Phosphorus in Yellow Soil Under Long-Term Application of Phosphorus and Organic Fertilizer [J]. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198.
[3] ShiChao WANG,ZhiHao YAN,JinYu WANG,ShengChang HUAI,HongLiang WU,TingTing XING,HongLing YE,ChangAi LU. Nitrogen Fertilizer and Its Combination with Straw Affect Soil Labile Carbon and Nitrogen Fractions in Paddy Fields [J]. Scientia Agricultura Sinica, 2020, 53(4): 782-794.
[4] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[5] SHI Ke, DONG ShiGang, SHEN FengMin, LONG Qian, JIANG GuiYing, LIU Fang, LIU ShiLiang. Effects of Wheat Seeding Rate with Nitrogen Fertilizer Application Reduction on Soil Microbial Biomass Carbon, Nitrogen and Enzyme Activities in Fluvo-Aquic Soil in Huang-Huai Plain [J]. Scientia Agricultura Sinica, 2019, 52(15): 2646-2663.
[6] ZHANG Lang,XU HuaQin,LI LinLin,CHEN YuanWei,ZHENG HuaBing,TANG QiYuan,TANG JianWu. Comparative Study on CH4Emission from Ratoon Rice and Double-Cropping Rice Fields [J]. Scientia Agricultura Sinica, 2019, 52(12): 2101-2113.
[7] HAN TianFu, MA ChangBao, HUANG Jing, LIU KaiLou, XUE YanDong, LI DongChu, LIU LiSheng, ZHANG Lu, LIU ShuJun, ZHANG HuiMin. Variation in Rice Yield Response to Fertilization in China: Meta-analysis [J]. Scientia Agricultura Sinica, 2019, 52(11): 1918-1929.
[8] REN FengLing, ZHANG XuBo, SUN Nan, XU MingGang, LIU KaiLou. A Meta-Analysis of Manure Application Impact on Soil Microbial Biomass Across China’s Croplands [J]. Scientia Agricultura Sinica, 2018, 51(1): 119-128.
[9] WANG ChuanJie, XIAO Jing, CAI AnDong, ZHANG WenJu, XU MingGang. Capacity and Characteristics of Soil Microbial Biomass Under Various Climate and Fertilization Conditions Across China Croplands [J]. Scientia Agricultura Sinica, 2017, 50(6): 1067-1075.
[10] WANG QiuJu, CHANG BenChao, ZHANG JinSong, HAN DongLai, SUI YuGang, CHEN HaiLong, YANG XingYu, WANG XueDong, JIAO Feng, CHANG BenChao, KEN Araya, LIU Feng. Effects of Albic Soil Physical Properties and Rice Yields After Long-Term Straw Incorporation [J]. Scientia Agricultura Sinica, 2017, 50(14): 2748-2757.
[11] YANG Xin-yi, LIU Xiao-hu, HAN Xiao-ri, DUAN Peng-peng, ZHU Yu-cui, QI Wen . Responses of Soil Microbial Biomass and Soluble Organic Matter to Different Application Rates of N:A Comparison Between Liaochun 10 and Liaochun 18 [J]. Scientia Agricultura Sinica, 2016, 49(7): 1315-1324.
[12] SHANG Jie, GENG Zeng-chao, WANG Yue-ling, CHEN Xin-xiang, ZHAO Jun. Effect of Biochar Amendment on Soil Microbial Biomass Carbon and Nitrogen and Enzyme Activity in Tier Soils [J]. Scientia Agricultura Sinica, 2016, 49(6): 1142-1151.
[13] YANG Xin-yi, LIU Xiao-hu, HAN Xiao-ri. Effect of Nitrogen Application Rates in Different Fertility Soils on Soil N Transformations and N Use Efficiency Under Different Fertilization Managements [J]. Scientia Agricultura Sinica, 2016, 49(13): 2561-2571.
[14] LI Chun-Yue, WANG Yi, PhilipBrookes , DANG Ting-Hui, WANG Wan-Zhong. Effect of Soil pH on Soil Microbial Carbon Phosphorus Ratio [J]. Scientia Agricultura Sinica, 2013, 46(13): 2709-2716.
[15] LIANG Bin, ZHAO Wei, YANG Xue-Yun, ZHOU Jian-Bin. Nitrogen Retention and Supply After Addition of N Fertilizer and Its Combination with Straw in the Soils with Different Fertilities [J]. Scientia Agricultura Sinica, 2012, 45(9): 1750-1757.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!