Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (2): 246-`254.doi: 10.3864/j.issn.0578-1752.2012.02.006

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of the Introduction of Biocontrol Agent Trichoderma harzianum T4 on the Bacterial Community in Cucumber Rhizosphere

 YIN  Dan-Han, GAO  Guan-Peng, XIA  Fei, WANG  Wei   

  1. 1.华东理工大学生物工程学院/生物反应器工程国家重点实验室,上海 200237
  • Received:2011-04-15 Online:2012-01-15 Published:2011-06-21

Abstract: 【Objective】The objective of this study is to analysis the impact of T. harzianum T4 introduction on the indigenous bacterial community of rhizosphere soil, and to provide objective biosafety evaluations for the field application of biocontrol agents. 【Method】 Comprised molecular tools DGGE and T-RFLP were used in this study to assess the modifications of the bacterial community in cucumber rhizosphere after inoculation with T. harzianum T4. 【Result】 Introduction of T. harzianum T4 in the soil resulted in significant variations of the bacterial community structures from 14 to 56 days post-inoculation. During this period the impact of T4 was sustainable and weakened gradually. T. harzianum T4 could restrain effectively Cyanobacterium, Beta-proteobacterium, Staphylococcus, Burkholderia, Serratia, Acidobacterium and some kinds of soil uncultured bacterium, while it improved the growth of Bacillus, Agrobacterium and Gemmatimonadetes observably. On 70th day after T. harzianum T4 introduced, as 2 weeks after harvest, there was no prominent alteration of bacterial community due to inoculation with T4. 【Conclusion】 Tracking of the modifications of the indigenous bacterial community by 16S rDNA DGGE and T-RFLP analysis not only described comprehensively the variations of the structure of soil bacterial community, but also showed the preliminary and qualitative information of bacterial community change. In general, the application of T. harzianum T4 exerted only transient impact on the bacterial community of cucumber rhizosphere in systematic field investigation, but the perturbation was unable to imperil the bacterial community stability in the long-term.

Key words: Trichoderma harzianum T4, soil bacterial community, T-RFLP, DGGE

[1]Punja Z K, Utkhede R S. Using fungi and yeasts to manage vegetable crop diseases. Trends in Biotechnology, 2003, 21(9): 400-407.

[2]Brimner T A, Boland G J. A review of the non-target effects of fungi used to biologically control plant disease. Agriculture, Ecosystems and Environment, 2003, 100: 3-16.

[3]Fließbach A, Winkler M, Lutz M P, Oberholzer H R, Mäder P. Soil amendment with Pseudomonas fluorescens CHA0: lasting effects on soil biological properties in soils low in microbial biomass and activity. Microbial Ecology, 2009, 57: 611-623.

[4]Thirup L, Johansen A, Winding A. Microbial succession in the rhizosphere of live and decomposing barley roots as affected by the antagonistic strain Pseudomonas fluorescens DR54-BN14 or the fungicide imazalil. FEMS Microbiology Ecology, 2003, 43: 383-392.

[5]Buddrus-Schiemann K, Schmid M, Schreiner K, Welzl G, Hartmann A. Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley. Microbial Ecology, 2010, 60(2): 381-393.

[6]Bankhead S B, Landa B B, Lutton E, Weller D M, McSpadden Gardener B B. Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiology Ecology, 2004, 49: 307-318.

[7]Correa O S, Montecchia M S, Berti M F, Fernández Ferrari M C, Pucheu N L, Kerber N L, García A F. Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Applied Soil Ecology, 2009, 41: 185-194.

[8]Götz M, Gomes N C, Dratwinski A, Costa R, Berg G, Peixoto R, Mendonca-Hagler L, Smalla K. Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiology Ecology, 2006, 56(2): 207-218.

[9]Horz H P, Rotthauwe J H, Lukow T, Liesack W. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. Journal of Microbiological Methods, 2000, 39: 197-204.

[10]Sipos R, Székely A J, Palatinszky M, Révész S, Márialigeti K, Nikolausz M. Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiology Ecology, 2007, 60: 341-350.

[11]Horz H P, Rotthauwe J H, Lukow T, Liesack W. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. Journal of Microbiological Methods, 2000, 39: 197-204.

[12]Li F, Hullar M A J, Lampe J W. Optimization of terminal restriction fragment polymorphism (T-RFLP) analysis of human gut microbiota. Journal of Microbiological Methods, 2007, 68: 303-311.

[13]Liu W T, Marsh T L, Cheng H, Forney L J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 1997, 63(11): 4516-4522.

[14]Kent A D, Smith D J, Benson B J, Triplett E W. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Applied and Environmental Microbiology, 2003, 69(11): 6768-6776.

[15]Sánchez J I, Rossetti L, Martínez B, Rodríguez A, Giraffa G. Application of reverse transcriptase PCR-based T-RFLP to perform semi-quantitative analysis of metabolically active bacteria in dairy fermentations. Journal of Microbiological Methods, 2006, 65: 268-277.

[16]Dunbar J, Ticknor L O, Kuske C R. Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Applied and Environmental Microbiology, 2001, 67(1): 190-197.

[17]朱伟杰, 王  楠, 郁雪平, 王  伟. 生防菌Pseudomonas fluorescens 2P24 对甜瓜根围土壤微生物的影响. 中国农业科学, 2010, 43(7): 1389-1396.

Zhu W J, Wang N, Yu X P, Wang W. Effects of the biocontrol agent Pseudomonas fluorescens 2P24 on microbial community diversity in the melon rhizosphere. Scientia Agricultura Sinica, 2010, 43(7): 1389-1396. (in Chinese)

[18]Nikolausz M, Sipos R, Révész S, Székely A, Márialigeti K. Observation of bias associated with re-amplification of DNA isolated from denaturing gradient gels. FEMS Microbiology Letters, 2005, 244: 385-390.

[19]Moeseneder M M, Arrieta J M, Muyzer G, Winter C, Herndl G J. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 1999, 65(8): 3518-3525.

[20]Nunan N, Daniell T J, Singh B K, Papert A, McNicol J W, Prosser J I. Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Applied and Environmental Microbiology, 2005, 71(11): 6784-6792.

[21]Altomare C, Norvell W A, Bjorkman T, Harman G E. Solubilization of phosphate and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology, 1999, 65(7): 2926-2933.

[22]Kleifeld O, Chet I. Trichoderma harzianum –interaction with plants and effect on growth response. Plant and Soil, 1992, 144(2): 267-272.

[23]李  淼, 产祝龙, 檀根甲, 丁克坚, 高智谋, 承河元. 木霉菌防治植物真菌病害研究进展. 生物技术通讯, 2009, 20(2): 286-290.

Li M, Chan Z L, Tan G J, Ding K J, Gao Z M, Cheng H Y. Research progress and prospect on Trichoderma spp. control fungal plant disease. Letters in Biotechnology, 2009, 20(2): 286-290. (in Chinese)

[24]Fuji K, Fujita E, Takaishi Y, Fujita T, Arita I, Komatsu M, Hiratsuka N. New antibiotics, trichopolyns A and B: isolation and biological activity. Cellular and Molecular Life Sciences, 1978, 34(2): 237-239.

[25]郁雪平, 朱伟杰, 高观朋, 王  伟. 生防木霉菌Th2和T4对甜瓜根围土壤微生态的影响. 植物保护学报, 2009, 36(6): 522-528.

Yu X P, Zhu W J, Gao G P, Wang W. Influences of biocontrol agents Trichoderma harzianum Th2 and T4 on microecosystem of rhizosphere soil in melon. Acta Phytophylacica Sinica, 2009, 36(6): 522-528. (in Chinese)

[26]LaMontagne M G, Michel Jr. F C, Holden P A, Reddy C A. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. Journal of Microbiological Methods, 2002, 49: 255-264.

[27]Blackwood C B, March T, Kim S H, Paul E A. Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Applied and Environmental Microbiology, 2003, 69(2): 926-932.

[28]Polz M F, Cavanaugh C M. Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology, 1998, 64(10): 3724-3730.

[29]Székely A J, Sipos R, Berta B, Vajna B, Hajdú C, Márialigeti K. DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence-aided T-RFLP profile of mature compost. Microbial Ecology, 2009, 57: 522-533.

[30]Hjort K, Lembke A, Speksnijder A, Smalla K, Jansson J K. Community structure of actively growing bacterial populations in plant pathogen suppressive soil. Microbial Ecology, 2007, 53(3): 399-413.

[31]Watanabe K, Kodama Y, Harayama S. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. Journal of Microbiological Methods, 2001, 44: 253-262.

[32]Yu Z T, Morrison M. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR- denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 2004, 70(8): 4800-4806.

[33]Artursson V, Finlay R D, Jansson J K. Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environmental Microbiology, 2005, 7(12): 1952-1966.

[34]Cordier C, Alabouvette C. Effects of the introduction of a biocontrol strain of Trichoderma atroviride on non target soil micro-organisms. European Journal of Soil Biology, 2009, 45: 267-274.

[35]Savazzini F, Longa C M O, Pertot I. Impact of the biocontrol agent Trichoderma atroviride SC1 on soil microbial communities of a vineyard in northern Italy. Soil Biology and Biochemistry, 2009, 41: 1457-1465.

[36]Grosch R, Scherwinski K, Lottmann J, Berg G. Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycological Research, 2006, 110: 1464-1474.

[37]Scherwinski K, Wolf A, Berg G. Assessing the risk of biological control agents on the indigenous microbial communities: Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 as model bacteria. BioControl, 2007, 52(1): 87-112.

[38]Hågvar S, Klanderud K. Effect of simulated environmental change on alpine soil arthropods. Global Change Biology, 2009, 15: 2972-2980.

[39]Kardol P, Cregger M A, Campany C E, Classen A T. Soil ecosystem functioning under climate change: plant species and community effects. Ecology, 2010, 91(3): 767-781.

[40]Kardol P, Reynolds W N, Norby R J, Classen A T. Climate change effects on soil microarthropod abundance and community structure. Applied Soil Ecology, 2011, 47: 37-44.

[41]Drenovsky R E, Vo D, Graham K J, Scow K M. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microbial Ecology, 2004, 48: 424-430.

[42]张立新, 谢关林, 楼妙苗. 洋葱伯克氏菌作为植物病害生防菌的研究进展及其风险评价. 中国生物防治, 2006, 22(4): 260-264.

Zhang L X, Xie G L, Lou M M. Risk assessment to use Burkholderia cepacia as a biocontrol agent of plant diseases. Chinese Journal of Biological Control, 2006, 22(4): 260-264. (in Chinese)

[43]Stockwell V O, Moore L W, Loper J E. Fate of Agrobacterium radiobacter K84 in the environment. Applied and Environmental Microbiology, 1993, 59(7): 2112-2120.
[1] SHANG LiRong,WAN LiQiang,LI XiangLin. Effects of Organic Fertilizer on Soil Bacterial Community Diversity in Leymus chinensis Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2614-2624.
[2] WANG YingYan, LU ShengE, LI YueFei, TU ShiHua, ZHANG XiaoPing, GU YunFu. Response of Anammox Bacteria Community Structure and Vertical Distribution to Different Long-Term Fertilizations in Calcareous Purple Paddy Soil [J]. Scientia Agricultura Sinica, 2017, 50(16): 3155-3163.
[3] LI Guan-nan, XIA Xue-juan, SENDEGEYA Parfait, HE Shi-bao, GUO Dong-dong, ZHU Yong. Screening and Identification of Silkworm Probiotic Bacillus SWL-19 and Its Effect on Intestinal Microflora Diversity [J]. Scientia Agricultura Sinica, 2015, 48(9): 1845-1853.
[4] MA Ming-chao, LIU Li, JIANG Xin, GUAN Da-wei, LI Jun. Evaluation of the Effect of Co-Inoculant of Paenibacillus mucilaginosus and Bradyrhizobium japonicum in Application [J]. Scientia Agricultura Sinica, 2015, 48(18): 3600-3611.
[5] SUN Li-Qin, YIN You-Ping, WANG Fang, WU Xiao-Fang, WANG Zhong-Kang. Correlation of Candidatus Liberibacter asiaticus and the Endophytic Community in Diaphorina citri [J]. Scientia Agricultura Sinica, 2014, 47(11): 2151-2161.
[6] JIN Di, WANG Jia-Qi, BU Deng-Pan, ZHAO Sheng-Guo, HU Xiao-Li, ZHAO Jing-Wen, LU Yu-Fei, WANG Dan-Dan, SUN Peng. Effect of Corn Straw Diet on Diversity of the Bacterial Community in the Rumen of Dairy Cows Analyzed by DGGE [J]. Scientia Agricultura Sinica, 2013, 46(5): 1025-1035.
[7] SA Ru-La, GAO Ju-Lin, YU Xiao-Fang, HU Shu-Ping. Screening of Low Temperature Maize Stalk Decomposition Microorganism [J]. Scientia Agricultura Sinica, 2013, 46(19): 4082-4090.
[8] JIA Hong-Xin, GONG Guang-Yu. Analysis of Bacterial Community Structure of Cheddar Cheese During Ripening [J]. Scientia Agricultura Sinica, 2013, 46(11): 2330-2336.
[9] JIN Zhen-Jiang, TAI Ji-Cheng, PAN Gen-Xing, LI Lian-Qing, SONG Xiang-Yun, XIE Tian, LIU Xiao-Yu, WANG Dan. Comparison of Soil Organic Carbon, Microbial Diversity and Enzyme Activity of Wetlands and Rice Paddies in Jingjiang Area of Hubei, China [J]. Scientia Agricultura Sinica, 2012, 45(18): 3773-3781.
[10] YUAN Hong-Chao, QIN Hong-Ling, LIU Shou-Long, TONG Cheng-Li, WEI Wen-Xue, WU Jin-Shui. Response of Abundance and Composition of the Bacterial Community to Long-term Fertilization in Paddy Soils [J]. Scientia Agricultura Sinica, 2011, 44(22): 4610-4617.
[11] WU Feng-Zhi, AN Mei-Jun. Effects of Watermelon Cultivars with Different Resistances to Fusarium oxysporum f. sp. niveum and Grafting on Rhizosphere  Soil Microorganism Population and Community Structure [J]. Scientia Agricultura Sinica, 2011, 44(22): 4636-4644.
[12]
LI Xiao-lin; GU Yun-fu; ZHANG Xiao-ping; TU Shi-hua; WU Ren-jun
. Nitrobacteria Community and Diversity in the Rhizosphere Soil of Mature Tobacco [J]. Scientia Agricultura Sinica, 2011, 44(12): 2462-2468 .
[13] ZHU Wei-jie,WANG Nan,YU Xue-ping,WANG Wei . Effects of the Biocontrol Agent Pseudomonas fluorescens 2P24 on Microbial Community Diversity in the Melon Rhizosphere
[J]. Scientia Agricultura Sinica, 2010, 43(7): 1389-1396 .
[14] NI Xue-qin,Joshua Gong,Hai Yu,Shayan Sharif,ZENG Dong. Influence of MHC Genotype on the Bacterial Community in the Layer Gastrointestinal Tract Analyzed by PCR-DGGE#br# [J]. Scientia Agricultura Sinica, 2009, 42(7): 2564-2571 .
[15] ZUO Wei-yong,CHEN Wei-hua,ZOU Si-xiang,ZHANG Yuan-shu
. Effects of Conglycinin Peptides on Development of Bacterial Community in Faeces of Rats
[J]. Scientia Agricultura Sinica, 2009, 42(10): 3700-3705 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!