Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (24): 5100-5107.doi: 10.3864/j.issn.0578-1752.2011.24.016

• VETERINARY SCIENCE • Previous Articles     Next Articles

Characteristics of Pathogenic and HA Antigenic Variation of H9N2 Subtybe Avian Influenza Viruses Isolated from 1998 to 2008 in China

 CHEN  Lu, LIU  Shou-Chuan, ZHAO  Jun, WANG  Chuan-Qing, WANG  Ze-Lin   

  1. 1.河南农业大学禽病研究所,郑州 450002
  • Received:2010-04-15 Online:2011-12-15 Published:2011-10-18

Abstract: 【Objective】 The objective of this experiment is to investigate the characteristics of pathogenic and antigenic variation of H9N2 subtybe avian influenza viruses isolated from 1998 to 2008 in China. 【Method】 The EID50, ELD50, MDT, ICPI, IVPI and the duration of shedding virus from infected 8-week-old SPF chickens of different H9N2 avian influenza viruses isolates were determined. The HI and VN activity of monoclonal antibody 2A4 and F6 on different H9N2 avian influenza viruses isolates were assayed and the HA genes of different antigenic reactive isolates were sequenced and analyzed. 【Result】 The determined pathogenicity suggested that the virulence of different isolates were different, thereinto, 3#, 12#, and 14# isolates showed higher pathogenicity than the others and could cause the death of SPF chickens. The 8-week-old SPF chickens infected by 3# or 12# isolate shed virus earlier and last for a longer time. 3 # and 12 # isolates showed specific response properties to monoclonal antibody 2A4 and F6. Monoclonal antibody 2A4 and F6 could inhibit the hemagglutinin activity of 3 # and 12 # isolates, however it could not neutralize the virus infection on CEF cells. HA sequence analysis showed that there was a single amino acid substitution of Ser (S)-to- Asn(N) at position 145 in the HA protein of 3 # and 12 # isolates, which led to the loss of reactivity to the monoclonal antibody 2A4 and F6 and the occurrence of a new potential glycosylation site NGT. The change of reactivity to the monoclonal antibody 2A4 and F6 suggests that the site (S145) is one of HA protein epitope of the H9N2 subtype avian influenza A virus. The new occurring potential glycoprotein site NGT in the HA protein of 3 # and 12 # isolates may cause the enhancing pathogenicity. 【Conclusion】 The results show that H9N2 subtype avian influenza virus isolates have the tendency to evolve, resulting to the occurrence of mutants which have higher virulence and variable antigenicity. The higher virulent mutants may cause death of chickens and lead to more economic loss. The antigenic mutants may evade the immunity, which pose a new challenge to the immune prevention for the H9N2 avian influenza.

Key words: avian influenza virus, H9N2 subtype, HA glycoprotein, pathogenicity, antigenic variation

[1]Fouchier R A, Munster V, Wallensten A, Bestebroer T M, Herfst S, Smith D, Rimmelzwaan G F, Olsen B, Osterhaus A D. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. Journal of Virology, 2005, 79: 2814-2822.

[2]Homme P J, Easterday B C. Characteristics of influenza A-turkey- Wisconsin-1966 virus. Avian Disease, 1970, 14: 66-74.

[3]Zhang P, Tang Y, Liu X, Peng D, Liu W, Liu H, Lu S, Liu X. Characterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in eastern China during a 5 year period (1998–2002) . Journal General Virology, 2008, 89, 3102-3112.

[4]Sun Y, Pu J, Jiang Z, Guan T, Xia Y, Xu Q, Liu L, Ma B, Tian F, Brown E G, Liu J. Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008. Veterinary Microbiology,2010, 146(3-4): 215-225.

[5]Park K J, Kwon H I, Song M S, Pascua P N, Baek Y H, Lee J H, Jang H L, Lim J Y, Mo I P, Moon H J, Kim C J, Choi Y K. Rapid evolution of low-pathogenic H9N2 avian influenza viruses following poultry vaccination programmer. Journal General Virology, 2011, 92(1): 36-50.

[6]Rogers G N, Paulson J C, Daniels R S, Skehel J J, Wilson I A, Wiley D C. Single amino acid substitutions in influenza hemagglutinin change receptor binding specificity. Nature, 1983, 304: 76-78.

[7]Xu L, Bao L, Lv Q, Deng W, Ma Y, Li F, Zhan L, Zhu H, Ma C, Qin  C. A single-amino-acid substitution in the HA protein changes the replication and pathogenicity of the 2009 pandemic A (H1N1) influenza viruses in vitro and in vivo. Virology Journal, 2010, 7: 32-35.

[8]Xu Q, Wang W, Cheng X, Zengel J, Jin H. Influenza H1N1 A/Solomon Island/3/06 virus receptor binding specificity correlates with virus pathogenicity, antigenicity, and immunogenicity in ferrets. Journal of Virology, 2010, 84: 4936-4945.

[9]Ping J, Li C, Deng G, Jiang Y, Tian G, Zhang S, Bu Z, Chen H. Single-amino-acid mutation in the HA alters the recognition of H9N2 influenza virus by a monoclonal antibody. Biochemical and Biophysical Research Communications, 2008, 371(1): 168-171.

[10]中华人民共和国农业部. 中华人民共和国兽用生物制品质量规程(2001年版). 北京: 中国农业出版社, 2001.

Agricultural Ministry of the People's Republic of China. Quality regulations of Veterinary Biologics of the People's Republic of China (2001 edition). Beijing: China Agricultural Press, 2001.( in Chinese)

[11]殷 震, 刘景华. 动物病毒学(第二版). 北京: 中国农业出版社, 1997.

Yin Z, Liu JH. Animal Virology (2nd edition). Beijing: China Agricultural Press, 1997. ( in Chinese)

[12]Wiley D C, Wilson I A, Skehel J J. Structural identification of the antibody-binding sites of Hong Kong influenza hemagglutinin and their involvement in antigenic variation. Nature, 1981, 289: 373-378.

[13]Caton A J, Brownlee G G, Yewdell J W, Gerhard W. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin. Cell, 1982, 31: 417-427.

[14]Tsuchiya E, Sugawara K, Hongo S, Matsuzaki Y, Muraki Y, Li ZN, Nakamura K. Antigenic structure of the hemagglutinin of human influenza A/H2N2 virus. Journal of General Virology, 2001, 82: 2475-2484.

[15]Philpott M, Hioe C, Sheerar M, Hinshaw VS. Hemagglutinin mutations related to attenuation altered cell tropism of a virulent avian influenza A virus. Journal of Virology, 1990, 64: 2941-2947.

[16]Okamatsu M, Sakoda Y, Kishida N, Isoda N, Kida H. Antigenic structure of the hemagglutinin of H9N2 influenza viruses. Archives of Virology, 2008, 153(12): 2189-2195.

[17]Kaverin N V, Rudneva I A, Ilyushina N A, Lipatov A S, Krauss S, Webster R G. Structural differences among hemagglutinins of influenza a virus subtypes are reflected in their antigenic architecture: Analysis of H9 escape mutants. Journal of Virology, 2004, 78(1): 240-249.

[18]Ferreira H L, Lambrecht B, van Borm S, Torrieri-Dramard L, Klatzmann D, Bellier B, van den Berg T. Identification of a dominant epitope in the hemagglutinin of an Asian highly pathogenic avian influenza H5N1 clade 1 virus by selection of escape mutants. Avian Disease, 2010, 54(1): 565-571.

[19]Wei J, Yan B, Chen Z, Li T, Deng F, Wang H, Hu Z. Production and characterization of monoclonal antibodies against the hemagglutinin of H5N1 and antigenic investigation of avian influenza H5N1 viruses isolated from China. Canadian Journal of Microbiology, 2011, 57(1): 42-48.

[20]Tsuchiya E, Sugawara K, Hongo S, Matsuzaki Y, Muraki Y, Li Z N, Nakamura K. Effect of addition of new oligosaccharide chains to the globular head of influenza A/H2N2 virus hemagglutinin on the intracellular transport and biological activities of the molecule. Journal of General Virology, 2002, 83: 1137-1146.

[21]Skehel J J, Stevens D J, Daniels R S, Douglas A R, Knossow M, Wilson I A, Wiley D C. A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of American, 1984, 81: 1779-1783.

[22]Schulze I T. Effects of glycosylation on the properties and functions of influenza virus hemagglutinin. The Journal of Infectious  Diseases, 1997, 176: 24-28.

[23]Kaverin N V, Rudneva I A, Ilyushina N A, Varich N L, Lipatov A S, Smirnov Y A, Govorkova E A, Gitelman A K, Lvov D K, Webster R G. Structure of antigenic sites on the hemagglutinin molecule of H5 influenza virus and phenotypic variation of escape mutants. Journal of General Virology, 2002, 83: 2497-2505.

[24]刘红旗, 张评浒, 刘秀梵, 刘文博, 贾立军. 封闭式饲养鸡场H9N2亚型禽流感病毒HA基因在5年内的遗传变异. 微生物学报, 2003, 43 (6): 706-711.

Liu H Q, Zhang P H, Liu X F, Liu W B, Jia L J. Genetic M utations of heam agglutinin genes of H9N2 subtype influenza a viruses in the field in a five- year period. Acta Microbiologica Sinica, 2003, 43 (6): 706-711.( in Chinese)

[25]娄本红, 朱秀同, 孙贝贝, 崔治中. 抗体选择压作用下H9N2亚型禽流感病毒HA基因的变异. 微生物学报, 2009, 49 (7) : 955-959.

Lou B H, Zhu X T, Sun B B, Cui Z Z. Mutations of the hemagglutinin gene of H9N2 subtype avian influenza viruses under selective pressure of antibody. Acta Microbiologica Sinica, 2009, 49(7): 955-959. ( in Chinese) 

[26]刘红旗, 黄 勇, 程 坚, 彭大新, 贾立军, 张如宽, 刘秀梵. 在疫苗免疫选择压力下H9N2亚型禽流行性感冒病毒HA基因的遗传变异. 病毒学报, 2002,18(2): 150-154.

Liu H Q, Huang Y, Cheng J, Peng D X, Jia L J Zhang R K, Liu X F. Genetic mutations of the hemagglutinin gene of H9N2 subtype avian influenza viruses under the selective pressure of vaccination. Chinese Journal of Virology, 2002, 18(2): 150-154.( in Chinese)
[1] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[2] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[3] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[4] WANG YanWen,WANG MengJing,ZHANG Hong,GAO XinXin,GUO Jing,LI XuYong. Evolution of Human H9N2 Avian Influenza Virus in China from 1998 to 2021 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4075-4090.
[5] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[6] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[7] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[8] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[9] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[10] ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104.
[11] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[12] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[13] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
[14] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
[15] SUN Qi,HE Fang,SHAO ShengNan,LIU Zheng,HUANG JiaFeng. Cloning and Functional Analysis of VdHP1 in Verticillium dahliae from Cotton [J]. Scientia Agricultura Sinica, 2020, 53(14): 2872-2884.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!