Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (23): 4952-4961.doi: 10.3864/j.issn.0578-1752.2011.23.024

• RESEARCH NOTES • Previous Articles     Next Articles

Effect of Tomato GMPase Overexpression on Tolerance of Potato Plants to Temperature Stress

 LI  Chao-Han, LI  Qing-Zhu, SHI  Qing-Hua, BAI  Long-Qiang, GUO  Xiao-Qing, LI  Xia, YU  Xian-Chang   

  1. 1.中国农业科学院蔬菜花卉研究所,北京100081
    2.山东农业大学园艺科学与工程学院/作物生物学国家重点实验室,山东泰安271018
  • Received:2011-05-06 Online:2011-12-01 Published:2011-09-20

Abstract: 【Objective】 The aim of the study was to clarify the function of the GDP-D-mannose pyrophosphorylase (GMPase) in the L-galactose pathway of ascorbic acid (AsA) synthesis in plants, and to make sure the relation of GMPase overexpression with ascorbic acid content and temperature-stress tolerance ability. 【Method】 Two transgenic potato strains of overexpressing tomato GMPase were obtained by agrobacterium-mediated transformation. The transgenic plants and wild-type plants were treated in temperature-stress conditions (10/5℃ as low-temperature stress, 35/30℃ as high-temperature stress) for 3 days then in the recover-condition (25/20℃) for 3 days. Real time RT-PCR was used to analyze the expression of GMPase gene. And ascorbic acid content and relative index to temperature stress were also determined. 【Result】Compared with wild-type plants, with the overexpression of GMPase gene in transgenic plants, the GMPase activity and contents of AsA and dehydroascorbate (DHA) in normal and temperature-stress conditions were increased as well as the activities of dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and ascorbate peroxidase (APX). Meanwhile, the malondialdehyde (MDA) and H2O2 contents and permeability were decreased in the transgenic plants. 【Conclusion】 The overexpression of GMPase may increase potato tolerance to temperature stress by increasing AsA level and lowering reactive oxygen species (ROS).

Key words: potato, ascorbic acid, GDP-D-mannose pyrophosphorylase, transgenic, temperature stress

[1]Scandalios J G. Oxygen stress and superoxide dismutases. Plant Physiology, 1993, 101: 712-720.

[2]Asada K. Ascorbate peroidase: a hydrogen perioxide-scavenging enzyme in plants. Physiologia Plantarum, 1992, 85: 235-241.

[3]Elstner E F, Osswald W. Mechanisms of oxygen activation during plant stress. Proceedings of the Royal Society of Edinburgh, 1994, 102: 131-154.

[4]陈坤明, 宫海军, 王锁民. 植物抗坏血酸的生物合成、转运及其生物学功能.西北植物学报, 2004, 24(2): 329-336.

Chen K M, Gong H J, Wang S M. Biosynthesis, transport and function of ascorbates in plants. Northwest Plant Journal, 2004, 24(2): 329-336. (in Chinese)

[5]Manisha G, Ann C, Jaco V, Herman C. Copper affects the enzymes of ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiologia Plantarum, 1999, 106(3): 262-267.

[6]Drazkiewicz M, Sko′rzyn′Ska-Polite E, Krupa Z. Response of the ascorbate-glutathione cycle to excess copper in Arabidopsis thaliana. Plant Science, 2003, 164: 195-202.

[7]Pukacka S, Ratajczak E. Antioxidative response of ascorbate- glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. Journal of Plant Physiology, 2006, 163: 1259-1266.

[8]Zou L P, Li H X, Ouyang B, Zhang J H, Ye Z B. Cloning, expression, and mapping of GDP-D-mannose pyrophosphorylase cDNA from tomato (Lycopersicon esculentum L.). Acta Genetica Sinica, 2006, 33 (8): 757-764.

[9]Conklin P L, Norris S R, Wheeler G L , Williams E H, Smirnoff N, Last R L. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 4198-4203.

[10]Huang C, He W, Guo J, Su P, Zhang L. Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. Journal of Experimental Botany, 2005, 56: 3041-3049.

[11]Badejo A A, Jeong S T, Goto-Yamamoto N, Esaka M. Cloning and expression of GDP-D-mannose pyrophosphorylase gene and ascorbic acid content of acerola (Malpighia glabra L.)fruits at ripening stages. Plant Physiology and Biochemistry, 2007, 45:665-672.

[12]Keller R, Springer F, Renz R, Kossmann J. Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. The Plant Journal, 1999, 19:131-141.

[13]Lin L L, Shi Q H, Wang H S, Qin A G, Yu X C. Over-expression of tomato GDP-Mannose pyrophosphorylase (GMPase) in potato increases ascorbate content and delays plant senescence. Agricultural Sciences in China, 2011, 10(4): 101-105.

[14]Nicot N, Hausman J F, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, 2005, 56: 2907-2914.

[15]Bubner B, Baldwin I T. Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Reports, 2004, 23: 263-27.

[16]Takahama U. Regulation of peroxidase-dependent oxidation of phenolics by ascorbic acid: Different effects of ascorbic acid on the oxidation of coniferyl alcohol by the apoplastic soluble and cell wall-bound peroxidases from epicotyls of Vignaangularis. Plant and Cell Physiology, 1994, 34:809-817.

[17]Chen Z, Young T E, Ling J, Chang S C, Gallie D R. Increasing vitamin C content of plants through enhanced ascorbate recycling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 3525-3530.

[18]Jiménez A, Hernández J A, Rio L A, Sevilla F. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiology, 1997, 114: 275-284.

[19]Pignocchi C, Kiddle G, Hernández I, Foster S J,  Asensi A, Tahar Taybi T,  Barnes J,  Foyer C H. Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiology, 2006, 141: 423-435.

[20]赵世杰, 许长成, 邹  琦. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994, 30(3): 207-210.

Zhao S J, Xu C C, Zou Q. Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiology Communications, 1994, 30(3): 207-210. (in Chinese)

[21]Petrie S E, Jaekson T L. Effects of nitrogen fertilization on manganese concentration and yield of barley and oats. Soil Science Society of America Journal, 1984, 48: 319-322.

[22]Wheeler G L, Jones M A, Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature, 1998, 393: 365-369.

[23]Smirnoff  N, Wheeler G L. Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Biochemistry and Plant Molecular Biology, 2000, 35:291-314.

[24]Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49:249-279.

[25]Badejo A A, Tanaka N, Esaka M. Analysis of GDP-D-mannose pyrophosphorylase gene promoter from acerola (Malpighia glabra L.) and increase in ascorbate content of transgenic tobacco expressing acerola gene. Plant and Cell Physiology, 2008, 49:126-132.

[26]秦爱国, 高俊杰, 于贤昌. 温度胁迫对马铃薯叶片抗坏血酸代谢系统的影响. 应用生态学报, 2009, 20(12): 2964-2970.

Qin A G, Gao J J, Yu X C. Effects of high and low-temperature stresses on ascorbic acid metabolism system in potato leaves.  Chinese Journal of Applied Ecology, 2009, 20(12): 2964-2970. (in Chinese)

[27]Liebler D C, Kling D S, Reed D J. Antioxidants protection of phospholipid bilayer by α-tocopherol. Control of α-tocopheol status and lipid peroxidation by ascorbic acid and glutathione. Journal of Biological Chemistry, 1986, (26):12114-12119.

[28]Tokunaga T, Miyahara K, Tabata K, Esaka M. Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for L-galactono-1, 4-lactone dehydrogenase. Plantarum, 2005, 220: 854-863.

[29]Smirnoff N, Colville L. Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants. Journal of Experimental Botany, 2008, 59(14): 3857-3868.

[30]Arial D, Jounechani R S. Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. Notulae Botanicae Horti Agrobotanici Cluj- Napoca, 2009, 37(2):165-172.

[31]谢居清, 李国学, 王效科, 郑启伟, 冯兆忠. 外源抗坏血酸对臭氧胁迫下水稻光合及生长参数的影响. 中国生态农业学报, 2009, 17(6):1176-1181.

Xie J Q, Li G X, Wang X K, Zheng Q W, Feng Z Z. Effect of exogenous ascorbic acid on photosynthesis and growth of rice under O3 stress. Chinese Journal of Eco-Agriculture, 2009, 17(6):1176-1181. (in Chinese)

[32]Shigeoka S, Ishikawa T, Tamoi M, Yabuta Y, Yoshimura K. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 2002, 53: 1305-1319.

[33]Yoshimura K, Yabuta Y, Tamoi M. Alternatively spliced mRNA variants of chloroplast ascorbate peroxidase isoenzymes in spinach leaves. Biochemistry, 1999, 338: 41-48.

[34]Eltayeb A E, Kawano N, Badawi G H. Enhanced tolerance to   ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiologia Plantarum, 2006, 127: 57-65.

[35]Yoon H S, Lee H, Lee I A, Kim K Y, Jo J. Molecular cloning of the monodehydroascorbate reductase gene from Brassica campestrsi and analysis of its mRNA level in response to oxidative stress. Biochimica and Biophysica Acta, 2004, 1658: 181-186.

[36]马春花, 马锋旺, 李明军, 束怀瑞. 外源抗坏血酸对离体苹果叶片衰老的影响. 园艺学报, 2006, 33(6):1179-1184.

Ma C H, Ma F W, Li M J, Shu H R. Effects of exogenous ascorbic acid on senescence of detached apple leaves. Acta Horticulturae Sinica, 2006, 33(6):1179-1184. (in Chinese)

[37]Ma Y H, Ma F W, Zhang J K, Li M J, Wang Y H, Dong L. Effects of high temperature on activities and gene expression of enzymes involved in ascorbate-glutathione cycle in apple leaves. Plant Science, 2008, 175:761-766.
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[4] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[5] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[6] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[7] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[8] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[9] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[10] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[11] HE KeWei,CHEN JiaFa,ZHOU ZiJian,WU JianYu. Fusarium verticillioides Resistant Maize Inbred Line Development Using Host-Induced Gene Silencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(9): 1835-1845.
[12] ZHANG MingJing,HAN Xiao,HU Xue,ZANG Qian,XU Ke,JIANG Min,ZHUANG HengYang,HUANG LiFen. Effects of Elevated Temperature on Rice Yield and Assimilate Translocation Under Different Planting Patterns [J]. Scientia Agricultura Sinica, 2021, 54(7): 1537-1552.
[13] YuXin LIANG,JianXiang WU,XiaoYu LI,ChunYu ZHANG,JiChao HOU,XuePing ZHOU,YongZhi WANG. Mapping of Epitopes and Establishment of Rapid DAS-ELISA for Potato Virus Y Coat Protein [J]. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162.
[14] HaiXia ZHENG,YuLin GAO,FangMei ZHANG,ChaoXia YANG,Jian JIANG,Xun ZHU,YunHui ZHANG,XiangRui LI. Cloning of Heat Shock Protein Gene Ld-hsp70 in Leptinotarsa decemlineata and Its Expression Characteristics under Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(6): 1163-1175.
[15] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!