Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (19): 4072-4080.doi: 10.3864/j.issn.0578-1752.2011.19.018

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Polymorphisms of SLC11A1 Gene and Their Association with Mastitis in Chinese Holstein

 GUO  Yang, WANG  Hong-Mei, HOU  Ming-Hai, WANG  Chang-Fa, HE  Hong-Bin, LU Wen-Fa , ZHONG  Ji-Feng   

  1. 1.山东省农业科学院奶牛研究中心
    2.吉林农业大学
  • Received:2010-05-31 Online:2011-10-01 Published:2010-07-14

Abstract: 【Objective】The polymorphisms of SLC11A1 gene and their correlation to mastitis in Chinese Holstein were investigated for the purpose of providing molecular maker information to facilitate the breeding efficiency of mastitis  resistance. 【Method】CRS-PCR, descend PCR and sequencing were applied to analyze the polymorphisms of four locus in SLC11A1 gene intron 9, exon10 and intron 11 in 771 Chinese Holstein Cattle. The PHASE and SHEsis softwares were used to analyze matching chain disequilibrium and haplotype analysis, respectively. 【Result】 Four SNPs not linking were found, in which 6 067(A/G), 6 358(C/T) and 7 809(A/T) were reported for the first time, and were in intron 9, exon 10 and intron 11, respectively. At locus 6 358 (C/T) and 7 155 (A/G), the cows with genotype CC and AA showed higher milk yield and lower SCS (P<0.05). Sixteen haplotype combinations were found in 771 Chinese Holstein Cattle, the cows with haplotype combinations CAAA had the higher milk yield and lowest SCS.【Conclusion】Considering the distribution frequencies of haplotype combinations, SLC11A1 gene CAAA haplotype combination is favorable haplotype combinations to the SCS and milk yield and can be chosen as the molecular markers of choosing mastitis resistance selection in dairy cattle.

Key words:

[1]Detilleux J C. Genetic factors affecting susceptibility to udder pathogens. Veterinary Microbiology, 2009, 134(1-2): 157-164.

[2]Vidal S, Gros P, Skamene E. Natural resistance to infection with intracellular parasites: molecular genetics identifies Nramp1 as the Bcg/Ity/Lsh locus. Journal of Leukocyte Biology, 1995, 58(4): 382-390.

[3]Valdez Y, Diehl G E, Vallance B A, Grassl G A, Guttman J A, Brown N F, Rosenberger C M, Littman D R, Gros P, Finlay B B. Nramp1 expression by dendritic cells modulates inflammatory responses during salmonella typhimurium infection. Cell Microbiology, 2008, 10(8): 1646-1661.

[4]Huynh C, Andrews N W. Iron acquisition within host cells and the pathogenicity of Leishmania. Cell Microbiology, 2008, 10(2): 293-300.

[5]Feng J W, Li Y J, Hashad M, Schurr M, Gros P, Adams L G, Templeton J W. Bovine natural resistance associated macrophage protein 1 (Nramp1) gene. Genome Research, 1996, 6: 956-964.

[6]Hébert A, Sayasith K, Sénéchal S, Dubreuil P, Lagacé J. Demonstration of intracellular Staphylococcus aureus in bovine mastitis alveolar cells and macrophages isolated from naturally infected cow milk. FEMS Microbiology Letters, 2000, 193(1): 57-62.

[7]Joo Y S, Moon J S, Fox L K, Suh G H, Kwon N H, Kim S H, Park Y H. Comparison of natural resistance-associated macrophage protein (Nrmp1) expression between cows with high and low milk somatic cells counts. Asian-Australasian Journal of Animal Sciences, 2003, 16(12): 1830-1836.

[8]胡海川, 王洪梅, 李建斌, 王长法, 李秋玲, 仲跻峰. 荷斯坦牛Nramp1基因遗传多态性及其与乳腺炎相关性的研究. 遗传, 2009, 31(1): 57-62.

Hu H C, Wang H M, Li J B, Wang C F, Li Q L, Zhong J F. Genetic polymorphism of Nramp1 gene and correlation with mastitis in Holstein Cattle. Hereditas, 2009, 31(1): 57-62. (in Chinese)

[9]Paixão T A, Ferreira C, Borges Á M, Oliveira D A A, Lage A P, Santos R L. Frequency of bovine Nramp1 (Slc11a1) alleles in Holstein and Zebu breeds. Veterinary Immunology and Immunopathology, 2006, 109(1-2): 37-42.

[10]Kumar N, Mitra A, Ganguly I, Singh R, Deb S M, Srivastava S K, Sharma A. Lack of association of brucellosis resistance with (GT) 13 microsatellite allele at 3’UTR of Nramp1 gene in Indian zebu (Bos indicus) and crossbred (Bos indicus×Bos taurus) cattle. Veterinary Microbiology, 2005, 111: 139-143.

[11]Paixao T A, Poester F P, Neta A V C, Borges Á M, Lage A P, Santos R L. NRAMP1 3′ untranslated region polymorphisms are not associated with natural resistance to brucella abortus in cattle. Infection and Immunity, 2007, 75(5): 2493-2499.

[12]Roupie V, Rosseels V, Piersoel V, Zinniel D K, Barletta R G, Huygen K. Genetic resistance of mice to Mycobacterium paratuberculosis is influenced by Slc11a1 at the early but not at the late stage of infection. Infection and Immunity, 2008, 76(5): 2099-2105.

[13]Pereira-Suárez A L, Estrada-Chávez C, Arriaga-Díaz C, Espinosa- Cueto P, Mancilla R.Coexpression of NRAMP1, iNOS, and nitrotyrosine in bovine tuberculosis. Veterinary Pathology, 2006, 43(5): 709-717.

[14]Estrada-Chávez C, Pereira-Suárez A L, Meraz M A, Arriaga C, García-Carrancá A, Sánchez-Rodriguez C, Mancilla R. High-level expression of Nramp1 in peripheral blood cells and tuberculous granulomas from Mycobacterium bovis-infected bovines. Infectection and Immunity, 2002, 69(11): 7165-7168.

[15]Pinedo P J, Buergelt C D, Donovan G A, Melendez P, Morel L, Wu R L, Langaee T Y, Rae D O.Candidate gene polymorphisms (BoIFNG, TLR4, SLC11A1) as risk factors for paratuberculosis infection in cattle. Preventive Veterinary Medicine, 2009, 91(2-4): 189-196.

[16]Delgado F, Estrada-Chávez C, Romano M, Paolicchi F, Blanco-Viera F, Capellino F, Chavez-Gris G, Pereira-Suárez A L. Expression of Nramp1 and iNOS in Mycobacterium avium subsp. paratuberculosis naturally infected cattle. Comparative Immunology, Microbiology Infectious Diseases, 2010, 33(5): 389-400.

[17]Ganguly I, Sharma A, Singh R, Deb S M, Singh D K, Mitra A.Association of microsatellite (GT)n polymorphism at 3´UTR of Nramp1 with the macrophage function following challenge with Brucella LPS in buffalo (Bubalus bubalis). Veterinary Microbiology, 2008(129): 188-196.

[18]萨姆布鲁克J, 弗里奇E F, 曼尼阿蒂斯T, 金冬雁, 黎孟枫译. 分子克隆实验指南: 第二版. 北京: 科学出版社, 1999.

Sambrook J, Fritsch E F, Maniatis T. Translated by Jin D Y, Li M F. Molecular Cloning: A Laboratory Manual. 2nd ed. Beijing: Science Press, 1999. (in Chinese)

[19]Shook G E, Schutz M M. Selection on somatic cell score to improve resistance to mastitis in the United States. Journal of Dairy Science, 1994, 77(2): 648-658.

[20]Banos G, Shook G E. Genotype by environment interaction and genetic correlations among parties for somatic cell count and milk yield. Journal of Dairy Science, 1990, 73(9): 2563-2573.

[21]Ruegg P L. Management of mastitis on organic and conventional dairy farms. Journal of Animal Science, 2009, 87(Suppl.13): 43-55.

[22]Zhang C L, Wang Y H, Chen H, Gu C W, Fang X T. SLC11A1 gene polymorphisms are not associated to somatic cell score and milk yield in Chinese Holstein. Veteinary Immunology and Immunopathology, 2009, 127(3-4): 389-392.

[23]马捷琼, 陈  宏, 刘缠民, 房兴堂, 陈宗芳. 徐州荷斯坦牛 Nramp1基因多态性与乳房炎通径分析. 黑龙江畜牧兽医, 2007(4): 33-35.

Ma J Q, Chen H, Liu C M, Fang X T, Chen Z F. Genetic polymorphism of Nramp1 gene and path analysis with mastitis in Xuzhou Hosltein Cattle. Heilongjiang Animal Science and Veterinary Medicine, 2007(4): 33-35. (in Chinese)

[24]Lam-Yuk-Tseung S, Picard V, Gros P. Identification of a tyrosine-based motif (YGSI) in the amino terminus of Nramp1 (SLC11A1) that is important for lysosomal targeting. Journal of Biology Chemistry, 2006, 281(42): 31677-31688.

[25]Martínez R, Dunner S, Barrera G., Cañon J. Novel variants within the coding regions of the SLC11A1 gene identified in Bos taurus and Bos indicus breeds. Journal of Animal Breeding and Genetics, 2008, 125(1): 57-62.
[1] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[2] ZHOU Jun,LIN Qing,SHAO BaoQuan,REN DuanYang,LI JiaQi,ZHANG Zhe,ZHANG Hao. Evaluating the Application Effect of Single-Step Genomic Selection in Pig Populations [J]. Scientia Agricultura Sinica, 2022, 55(15): 3042-3049.
[3] XinYuan MU,Xia ZHAO,LiMin GU,BaoYi JI,Yong DING,FengQi ZHANG,Jun ZHANG,JianShuang QI,ZhiYan MA,LaiKun XIA,BaoJun TANG. Effects of Straw Returning Amount on Grain Yield, Dry Matter Accumulation and Transfer in Summer Maize with Different Genotypes [J]. Scientia Agricultura Sinica, 2020, 53(1): 29-41.
[4] JiangPeng SHI, ChunFen ZHANG, Shu DENG, LiYuan HOU, Rong XIAO, FuRong LI, YanHui DONG, YuanJun NIE, YiXue WANG, QiuFen CAO. Morphological Identification and Cultivation of New Germplasm of Apple Homozygous Genotypes [J]. Scientia Agricultura Sinica, 2018, 51(10): 1960-1971.
[5] WEN Xin, DENG Shu, ZHANG ChunFen, HOU LiYuan, SHI JiangPeng, NIE YuanJun, XIAO Rong, QIN YongJun, CAO QiuFen. Regeneration of New Germplasms Using Anther Culture of Apple Cultivar ‘Gala’ [J]. Scientia Agricultura Sinica, 2017, 50(14): 2793-2806.
[6] ZHANG Xu-fei, HOU Li-juan, QIU Heng-qing, HUANG Lu-sheng, GUO Yuan-mei. An Association Study of Positional and Functional Candidate Genes HMGA1, C6orf106 and ENSSSCG00000023160 with Leg Soundness in Pigs [J]. Scientia Agricultura Sinica, 2016, 49(20): 4030-4039.
[7] YANG Jin-zhong, LIANG Shu-min, LI Na-na, LIU Yong-hua, HAO Jian-ping. Functional Traits of Maize Stems as Supporting Organs and Their Plasticity [J]. Scientia Agricultura Sinica, 2016, 49(1): 69-79.
[8] HUANG Yi, LI Ting-xuan, ZHANG Xi-zhou, JI Lin, WU Yi-po. Characteristics of Nitrogen Transportation and Fractions in Different Organs of Barley Genotype with High Nitrogen Utilization Efficiency [J]. Scientia Agricultura Sinica, 2015, 48(6): 1151-1161.
[9] XU Yunbi. Envirotyping and Its Applications in Crop Science [J]. Scientia Agricultura Sinica, 2015, 48(17): 3354-3371.
[10] QU Zhi-na, LIU Hong-yu, WANG Juan, ZHAO Si-jun, LI Yu-qing, HUANG Xiu-mei, GAI Wen-yan, WANG Jun-wei. Antimicrobial Resistance Investigation and Dominant Genotype Analysis of ESBLs- Producing Escherichia coli Strains from Chicken in Qingdao [J]. Scientia Agricultura Sinica, 2015, 48(10): 2058-2066.
[11] DAI Hai-Fang, WU Hui, A Man-Gu-Li-?Mai-Mai-Ti-A-Li, WANG Li-Hong, MAI Mai-Ti-?A-Pi-Zi, ZHANG Ju-Song. Analysis of Salt-Tolerance and Determination of Salt-Tolerant Evaluation Indicators in Cotton Seedlings of Different Genotypes [J]. Scientia Agricultura Sinica, 2014, 47(7): 1290-1300.
[12] LIU Chuan-liang, TIAN Rui-ping, KONG De-pei, LI Feng-lian, SHANG Hai-hong, CHEN Xiu-jun. Establishment and Application of Efficient Transformation System for Cotton [J]. Scientia Agricultura Sinica, 2014, 47(21): 4183-4197.
[13] LIU Chun-Xiao-1, ZHAO Hai-Jun-1, DONG Shu-Ting-2, WANG Qing-Cheng-1, LI Zong-Xin-1, LIU Kai-Chang-1. Study on Characteristics of Nitrogen Metabolism in Diallel Cross Generation of Different Maize Genotypes After Silking [J]. Scientia Agricultura Sinica, 2014, 47(1): 33-42.
[14] GAN Shang-Quan, SHEN Min, LI Huan, LIANG Yao-Wei, YANG Jing-Quan, GAO Lei, LIU Shou-Ren, WANG Xin-Hua. Polymorphism of the 60149273th Loci on X Chromosome Among Fat Tail and Thin Tail Breeds and Its Gene Mapping [J]. Scientia Agricultura Sinica, 2013, 46(22): 4791-4799.
[15] ZHAO Long-Fei, LI Chao-Hai, LIU Tian-Xue, WANG Xiu-Ping, SENG Shan-Shan. Effect of High Temperature During Flowering on Photosynthetic Characteristics and Grain Yield and Quality of Different Genotypes of Maize (Zea Mays L.) [J]. Scientia Agricultura Sinica, 2012, 45(23): 4947-4958.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!