Scientia Agricultura Sinica ›› 2015, Vol. 48 ›› Issue (10): 2058-2066.doi: 10.3864/j.issn.0578-1752.2015.10.018

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Antimicrobial Resistance Investigation and Dominant Genotype Analysis of ESBLs- Producing Escherichia coli Strains from Chicken in Qingdao

QU Zhi-na1, LIU Hong-yu2, WANG Juan1, ZHAO Si-jun1, LI Yu-qing1, HUANG Xiu-mei1, GAI Wen-yan1, WANG Jun-wei1   

  1. 1China Animal Health and Epidemiology Center, Qingdao 266032, Shandong
    2College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030
  • Received:2014-07-29 Online:2015-05-16 Published:2015-05-16

Abstract: 【Objective】 By using antimicrobial susceptibility testing and detection of phenotype and genotype in extended spectrum beta-lactamases (ESBLs), this study aims to find out the distribution and drug-resistance of ESBLs-producing E.coli strains on broiler farms in Qingdao, and then analyze genotype and gene subtype of ESBLs, so as to provide a basis for guiding rational clinical use of antimicrobial agents and effective control of infection and spread of ESBLs-producing strains.【Method】The antimicrobial susceptibility of 249 E. coli strains was determined by micro broth dilution, the phenotype of ESBLs was identified and determined by CLSI standard method, DNA was amplified and the genotype of drug resistance plasmid of ESBLs was analyzed by PCR, sequencing and biological software, and the significant difference between ESBLs-producing and non-producing strains was analyzed  with SPSS19.0 software.【Result】There were 83.13% of E.coli strains produced ESBLs. The resistance rate of ESBLs-producing strains to 7 kinds of drugs was higher than that of non-ESBLs-producing ones, and there was a significant difference between them (P<0.05) to GM, SPT, AM, A/C and CEF. But the resistance rate of ESBLs-producing strains to tetracycline and florfenicol was significantly lower than those in non-ESBLs-producing ones. The multi-drug resistance rate of ESBLs producing and non-producing strains was 99.03% and 92.86%, respectively (P=0.035). The detection rate of CTX-M, TEM and OXA genotype was 100%, 99.52% and 47.83%, respectively, and SHV genotype wasn’t detected. The enzyme producing strains belong to 10 gene subtypes, the dominant ones of which were TEM-1, CTX-M-65, CTX-M-55, and OXA-1. CTX-M-123 and CTX-M-64, the recombinant chimeras, were found from healthy poultry for the first time. 【Conclusion】The chicken origin ESBLs-producing E.coli strains are widely spread and transmitted in Qingdao. The antimicrobial resistance of ESBLs-producing strains are more serious than that of non-ESBLs-producing strains. Compared to other areas in China, CTX-M and TEM are also popular genotypes in Qingdao, but with different gene subtypes, TEM-1, CTX-M-65, CTX-M-55 and OXA-1 are dominant gene subtypes of each genotype, respectively.

Key words: chicken origin E.coli, drug-resistance, ESBLs, genotype, gene subtype

[1]    Bush K, Jacoby G A, Medeiros A A. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrobial Agents And Chemotherapy, 1995, 39(6): 1211-1233.
[2]    Yu W L, Chuang Y C, Walther-Rasmussen J. Extended-spectrum beta-lactamases in Taiwan: epidemiology, detection, treatment and infection control. Microbiol Immunol Infect, 2006, 39: 264-277.
[3]    Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. Twentieth Informational Supplement, M100-S20, CLSI, Wayne, PA. 2010.
[4]    苑丽, 莫娟, 胡功政, 李聪梅, 王会玲. 49株鸡大肠杆菌OXA型β-内酰胺酶的检测. 江西农业学报, 2009, 21(8): 1-3.
Yuan L, Mo J, Hu G Z, Li C M, Wang H L. Detection of OXA-type β-lactamases among 49 strains of Escherichia coli isolates from chickens. Acta Agriculturae Jiangxi, 2009, 21(8): 1-3. (in Chinese)
[5]    张珍珍, 吴俊伟, 魏述永, 唐建华, 陈红伟, 李赛. 动物源大肠杆菌超广谱β-内酰胺酶与头孢菌素酶基因型分析. 畜牧兽医学报, 2009, 40(6): 898-903.
Zhang Z Z, Wu J W, Wei S Y, Tang J H, Chen H W, Li S. Analysis of genotype of Escherichia coli-producing ESBLs and AmpC β-lactamases isolates from farm animals. Acta Veterinaria et Zootechnica Sinica, 2009, 40(6): 898-903. (in Chinese)
[6]    吴华, 裴亚玲, 刘建华, 胡功政, 潘玉善, 陈华, 徐坤玲, 李凌锋. 鸭大肠杆菌超广谱β-内酰胺酶检测(ESBLs)及药物敏感性测定. 安徽农业大学学报, 2008, 35(3): 462-468.
Wu H, Pei Y L, Liu J H, Hu G Z, Pan Y S, Chen H, Xu K L, Li L F. Deternimation of ESBLs and antibiotics susceptibility test analysis for avian pathogenic Escherichia coli from the disease duck. Journal of Anhui Agricultural University, 2008, 35(3): 462-468. (in Chinese)
[7]    Yuan L, Liu J H, Hu G Z, Pan Y S, Liu Z M, Mo J, Wei Y J. Molecular characterization of extended-spectrum β-lactamase- producing Escherichia coli isolates from chickens in Henan Province, China. Journal of Medical Microbiology, 2009, 58: 1449-1453.
[8]    裴亚玲. 鸡源大肠杆菌ESBLs基因型检测[D]. 郑州: 河南农业大学, 2009.
Pei Y L. Genotype detection of extended-spectrum β-lactamases of Escherichia coli isolated from chicken[D]. Zhengzhou: Master DissertationHenan Agricultural University, 2009. (in Chinese)
[9]    刘保光, 世洪勋, 格桑顿旦, 彭措曲珍, 尼夏罗布, 顿珠. 西藏地区藏鸡大肠杆菌超广谱β-内酰胺酶检测及药物敏感性分析. 家畜生态学报, 2013, 34(3): 5-8.
Liu B G, Shi H X, Ge S D D, Pei C Q Z, Ni X L B, Dun Z. Deternimation of ESBLs and antibiotics susceptibility test analysis for Escherichia coli from the chickens in Xizang. Acta Ecologiae Animalis Domastici, 2013, 34(3): 5-8. (in Chinese)
[10]   Fortini D, Fashae K, Garc?´a-Ferna´ndez A, Villa L, Carattoli A. Plasmid-mediated quinolone resistance and β-lactamases in Escherichia coli from healthy animals from Nigeria. Journal of Antimicrobial Chemotherapy, 2011, 66: 1269-1272.
[11]   Brin˜as L, Zarazaga M, Sa´enz Y, Ruiz-Larrea F, Torres C. β-Lactamases in Ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. A Antimicrobial Agents And Chemotherapy, 2002, 46(10): 3156-3163.
[12]   Guenther S, Aschenbrenner K, Stamm I, Bethe A, Semmler T, Stubbe A, Stubbe M, Batsajkhan N, Glupczynski Y, Wieler L H, Ewers C. Comparable high rates of extended-spectrum-beta-lactamase- producing Escherichia coli in birds of Prey from Germany and Mongolia. Plos One, 2012, 7(12): 1053-1039.
[13]   Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Catry B, Herman L, Haesebrouck F, Butaye P. Diversity of extended-spectrum β-lactamases and class C β-Lactamases among cloacal Escherichia coli isolates in Belgian broiler farms. Antimicrobial Agents and Chemotherapy, 2008, 52(4): 1238-1243.
[14]   Ma J Y, Liu J H, Lü L C, Zong Z Y, Sun Y, Zheng H Q, Chen Z L, Zeng Z L. Characterization of extended-spectrum β-lactamase genes found among Escherichia coli isolates from duck and environmental samples obtained on a duck farm. Applied and Environmental Microbiology, 2012, 78: 3668-3673.
[15]   苑丽, 刘建华, 胡功政, 潘玉善, 莫娟, 魏永俊, 裴亚玲. 鸡大肠杆菌TEM和CTX-M型超广谱β-内酰胺酶基因分型研究. 中国农业科学, 2010, 43(20): 4310-4316.
Yuan L, Liu J H, Hu G Z, Pan Y S, Mo J, Wei Y J, Pei Y L. Genotypes of TEM-type and CTX-M-type extended-spectrumβ-lactamases produced by Escherichia coli isolated from the fowl. Scientia Agricultura Sinica, 2010, 43(20): 4310-4316. (in Chinese)
[16]   Liao X P, Liu B T, Yang Q E, Sun J, Liang L, Fang L X, Liu Y H. Comparison of plasmids coharboring 16s rRNA methylase and extended-spectrum β-lactamase genes among Escherichia coli isolates from pets and poultry. Journal of Food Protection, 2013, 76(12): 2018-2023.
[17] Ahmed A M, Shimabukuro H, Shimamoto T. Isolation and molecular characterization of multidrug-resistant strains of Escherichia coli and Salmonella from retail chicken meat in Japan. Journal of Food Science. , 2009, 74(7): 405-410.
[18]   苑丽. 鸡源分离菌超广谱β-内酰胺酶基因分型和整合子分子特征[D]. 郑州: 河南农业大学, 2010.
Yuan L. Genotypes of extended spectrum bata-lactamases and molecular characteristics of integrons among chichen isolates[D]. Doctoral Dissertation Zhengzhou: Henan Agricultural University, 2010. (in Chinese)
[19]   Soufi L, Abbassi M S, Sáenz Y, Vinué L, Somalo S, Zarazaga M, Abbas A, Dbaya R, Khanfir L, Hassen A B, Hammami S, Torres C. Prevalence and diversity of integrons and associated resistance genes in Escherichia coli isolates from poultry meat in Tunisia. Foodborne Pathogens and Disease, 2009, 6(9): 1067-1073.
[20]   D’Andrea M M, Arena F, Pallecchi L, Rossolini G M. CTX-M-type β-lactamases: a successful story of antibiotic resistance. International Journal of Medical Microbiology, 2013, 303: 305-317.
[21]   Zhao W H, Hu Z Q. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Critical Reviews in Microbiology, 2013, 39(1): 79-101.
[22]   Randall L P, Clouting C, Horton R A, Coldham N G, Wu G, Clifton-Hadley F A, Davies R H, Teale C J. Prevalence of Escherichia coli carrying extended-spectrum b-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. Journal of Antimicrobial Chemotherapy, 2011, 66: 86-95.
[23]   Zheng H Q, Zeng Z L, Chen S, Liu Y H, Yao Q F, Deng Y T, Chen X J, Lv L C, Zhuo C, Chen Z L, Liu J H. Prevalence and characterisation of CTX-M β-lactamases amongst Escherichia coli isolates from healthy food animals in China. International of Journal of Antimicrobial Agents, 2012, 39: 305-310.
[24]   He D, Partridge S R. , Shen J Z, Zeng Z L, Liu L P, Rao L L, Lv L C, Liu J H. CTX-M-123, a novel hybrid of the CTX-M-1 and CTX-M-9 Group β-Lactamases recovered from Escherichia coli isolates in China. Antimicrobial Agents and Chemotherapy, 2013, 57(8): 4068-4071.
[25]   Sun Y, Zeng Z, Chen S, Ma J, He L, Liu Y, Deng Y, Lei T, Zhao J, Liu J H. High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clinical Microbiology and Infection, 2010, 16(9): 1475-1481.
[1] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[2] ZHOU Jun,LIN Qing,SHAO BaoQuan,REN DuanYang,LI JiaQi,ZHANG Zhe,ZHANG Hao. Evaluating the Application Effect of Single-Step Genomic Selection in Pig Populations [J]. Scientia Agricultura Sinica, 2022, 55(15): 3042-3049.
[3] XinYuan MU,Xia ZHAO,LiMin GU,BaoYi JI,Yong DING,FengQi ZHANG,Jun ZHANG,JianShuang QI,ZhiYan MA,LaiKun XIA,BaoJun TANG. Effects of Straw Returning Amount on Grain Yield, Dry Matter Accumulation and Transfer in Summer Maize with Different Genotypes [J]. Scientia Agricultura Sinica, 2020, 53(1): 29-41.
[4] JiangPeng SHI, ChunFen ZHANG, Shu DENG, LiYuan HOU, Rong XIAO, FuRong LI, YanHui DONG, YuanJun NIE, YiXue WANG, QiuFen CAO. Morphological Identification and Cultivation of New Germplasm of Apple Homozygous Genotypes [J]. Scientia Agricultura Sinica, 2018, 51(10): 1960-1971.
[5] WEN Xin, DENG Shu, ZHANG ChunFen, HOU LiYuan, SHI JiangPeng, NIE YuanJun, XIAO Rong, QIN YongJun, CAO QiuFen. Regeneration of New Germplasms Using Anther Culture of Apple Cultivar ‘Gala’ [J]. Scientia Agricultura Sinica, 2017, 50(14): 2793-2806.
[6] ZHANG Xu-fei, HOU Li-juan, QIU Heng-qing, HUANG Lu-sheng, GUO Yuan-mei. An Association Study of Positional and Functional Candidate Genes HMGA1, C6orf106 and ENSSSCG00000023160 with Leg Soundness in Pigs [J]. Scientia Agricultura Sinica, 2016, 49(20): 4030-4039.
[7] YANG Jin-zhong, LIANG Shu-min, LI Na-na, LIU Yong-hua, HAO Jian-ping. Functional Traits of Maize Stems as Supporting Organs and Their Plasticity [J]. Scientia Agricultura Sinica, 2016, 49(1): 69-79.
[8] HUANG Yi, LI Ting-xuan, ZHANG Xi-zhou, JI Lin, WU Yi-po. Characteristics of Nitrogen Transportation and Fractions in Different Organs of Barley Genotype with High Nitrogen Utilization Efficiency [J]. Scientia Agricultura Sinica, 2015, 48(6): 1151-1161.
[9] XU Yunbi. Envirotyping and Its Applications in Crop Science [J]. Scientia Agricultura Sinica, 2015, 48(17): 3354-3371.
[10] DAI Hai-Fang, WU Hui, A Man-Gu-Li-?Mai-Mai-Ti-A-Li, WANG Li-Hong, MAI Mai-Ti-?A-Pi-Zi, ZHANG Ju-Song. Analysis of Salt-Tolerance and Determination of Salt-Tolerant Evaluation Indicators in Cotton Seedlings of Different Genotypes [J]. Scientia Agricultura Sinica, 2014, 47(7): 1290-1300.
[11] LIU Chuan-liang, TIAN Rui-ping, KONG De-pei, LI Feng-lian, SHANG Hai-hong, CHEN Xiu-jun. Establishment and Application of Efficient Transformation System for Cotton [J]. Scientia Agricultura Sinica, 2014, 47(21): 4183-4197.
[12] LIU Chun-Xiao-1, ZHAO Hai-Jun-1, DONG Shu-Ting-2, WANG Qing-Cheng-1, LI Zong-Xin-1, LIU Kai-Chang-1. Study on Characteristics of Nitrogen Metabolism in Diallel Cross Generation of Different Maize Genotypes After Silking [J]. Scientia Agricultura Sinica, 2014, 47(1): 33-42.
[13] GAN Shang-Quan, SHEN Min, LI Huan, LIANG Yao-Wei, YANG Jing-Quan, GAO Lei, LIU Shou-Ren, WANG Xin-Hua. Polymorphism of the 60149273th Loci on X Chromosome Among Fat Tail and Thin Tail Breeds and Its Gene Mapping [J]. Scientia Agricultura Sinica, 2013, 46(22): 4791-4799.
[14] JI Lin, LI Ting-Xuan, ZHANG Xi-Zhou, YU Hai-Ying. Root Morphological and Activity Characteristics of Rice Genotype with High Nitrogen Utilization Efficiency [J]. Scientia Agricultura Sinica, 2012, 45(23): 4770-4781.
[15] ZHAO Long-Fei, LI Chao-Hai, LIU Tian-Xue, WANG Xiu-Ping, SENG Shan-Shan. Effect of High Temperature During Flowering on Photosynthetic Characteristics and Grain Yield and Quality of Different Genotypes of Maize (Zea Mays L.) [J]. Scientia Agricultura Sinica, 2012, 45(23): 4947-4958.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!