Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (10): 1960-1971.doi: 10.3864/j.issn.0578-1752.2018.10.015

• HORTICULTURE • Previous Articles     Next Articles

Morphological Identification and Cultivation of New Germplasm of Apple Homozygous Genotypes

JiangPeng SHI1(), ChunFen ZHANG2, Shu DENG2, LiYuan HOU3, Rong XIAO2, FuRong LI1, YanHui DONG3, YuanJun NIE4, YiXue WANG3, QiuFen CAO1,3()   

  1. 1College of Biological Engineering, Shanxi University, Taiyuan 030006
    2Pomology Institute, Shanxi Academy of Agricultural Sciences, Taiyuan 030031
    3Biotechnology Research Center, Shanxi Academy of Agriculture Sciences, Taiyuan 030031
    4Agricultural resource and Economic Research Institute, Shanxi Academy of Agriculture Sciences, Taiyuan 030031)
  • Received:2017-10-11 Accepted:2017-12-10 Online:2018-05-16 Published:2018-05-16

Abstract:

【Objective】 Homozygous genotype lines were obtained by anther culture of different apple pollen grains, so their botanical characteristics, biological characteristics, and their induced culture, root conditions were different. In this study, the ploidy, characteristics and root conditions of each line were observed and analyzed. Appropriate rooting conditions and good combinations of lines for selecting apple homozygous genotypes are of great significance to the innovation of apple germplasm resources.【Method】 The homozygous genotype lines of ‘Gala’, ‘Fuji’ and ‘Red Star’ were obtained by apple anther culture. The ploidy level of homozygous genotype lines was studied using flow cytometry, root and leaf morphology and root conditions of each line were observed and recorded. 【Result】 A total of 32 homozygous lines were obtained by apple anther culture. The results of flow cytometry showed that there were 1 haploid, 1 triploids, 3 tetraploids and 27 diploids. The ploidy rate of 'Red Star' homozygous genotype was the highest, about 28.57%. The root rate, root length and root number of homozygous lines were affected by IBA concentration of rooting medium. When the concentration of IBA was 2-3 mg·L-1, the root features of apple homozygous lines were the best. The leaf number, root length, root number, plant height, leaf length/width and petiole length of each line were different. ‘Red Star’ homozygous genotype lines (DH2-1, DH0-3, DH0-4, DH0-7), ‘Fuji’ homozygous genotype line (DH1-3) and ‘Gala’ homozygous genotype lines (DH2-2, DH2-4, DH2- 12, DH2-20) have a good traits (plants are taller, roots are longer, and the number of roots and leaves are more). The survival rate of ‘Red Star’ homozygous genotype was the highest, about 28.57%. 【Conclusion】 The main ploidy of apple homozygous genotype was diploid. Compared with the diploid lines, the haploid lines had a narrow leaf base, finer petiole, the leaf color and the leaf margin were shallow, while the polyploid lines showed wider leaf base, thicker petioles, leaf color and leaf edge serrated deep.

Key words: apple anther culture, ploidy analysis, homogeneous genotype, root hormone, trait analysis

Table 1

‘Red Star’, ‘Fuji’, ‘Gala’ apple homozygous genotype lines ploidy analysis results"

红星株系
Red star strain
倍性
Ploidy
富士株系
Fuji strain
倍性
Ploidy
嘎啦株系
Gala strains
倍性
Ploidy
嘎啦株系
Gala strains
倍性
Ploidy
嘎啦株系
Gala strains
倍性
Ploidy
DH0-1 2n DH1-1 2n DH2-1 2n DH2-8 2n DH2-15 4n
DH0-2 2n DH1-2 4n DH2-2 2n DH2-9 2n DH2-16 2n
DH0-3 2n DH1-3 2n DH2-3 1n DH2-10 2n DH2-17 2n
DH0-4 2n DH1-4 2n DH2-4 2n DH2-11 2n DH2-18 2n
DH0-5 4n DH1-5 2n DH2-5 2n DH2-12 2n DH2-19 2n
DH0-6 2n DH2-6 2n DH2-13 2n DH2-20 2n
DH0-7 3n DH2-7 2n DH2-14 2n

Fig. 1

Flow cytometric (FCM) analysis of ploidy level of regenerated plantlets"

Table 2

Effects of different IBA concentrations on root morphology of 'Red Star' apple homozygous lines"

根系形态
Root morphology
培养基
Medium
株系 Line
DH0-1 DH0-2 DH0-3 DH0-4 DH0-5 DH0-6 DH0-7
生根率
Root rate (%)
T1 26.67 6.67 70 46.67 33.33 46.67 33.33
T2 53.33 86.67 100 93.33 86.67 66.67 100
T3 73.33 73.33 93.33 93.33 100 53.33 66.67
根长
Root length
(cm/plant)
T1 5.70±0.81a 4.80b 18.13±1.53a 3.70±1.16a 3.50±0.58b 3.50±0.79a 3.90±0.56a
T2 3.87±1.13a 6.63±1.19a 20.83±1.66a 3.73±0.77a 4.63±0.91b 3.17±0.77a 3.93±0.67a
T3 4.60±0.71a 4.50±0.67b 20.13±1.51a 4.07±1.13a 8.33±1.17a 3.13±0.90a 4.27±0.95a
根数
Root number
T1 7.00±1.26b 3.00b 5.00±1.00b 2.33±1.05c 3.33±0.83b 3.33±1.32b 1.00c
T2 4.67±1.32b 5.00±1.00a 10.00±1.26a 15.33±1.28a 5.67±1.05a 9.00±1.00a 22.33±1.59a
T3 17.67±1.56a 1.33±0.83c 7.00±1.26ab 9.33±0.83b 6.33±1.15a 8.67±0.83a 12.33±1.45b

Fig. 2

The root of ‘Red Star’, ‘Fuji’, ‘Gala’ apple homozygous genotype lines"

Table 3

Effects of different IBA concentrations on root morphology of 'Fuji' apple homozygous"

根系形态
Root morphology
培养基
Medium
株系 Line
DH1-1 DH1-2 DH1-3 DH1-4 DH1-5
生根率
Root rate(%)
T1 53.33 13.33 26.67 _ _
T2 100 60 100 40 26.67
T3 86.67 73.33 66.67 6.67 53.33
根长
Root length
(cm/plant)
T1 9.53±1.21b 8.40±1.37b 14.00±1.20b _ _
T2 17.43±1.00a 19.67±1.41a 21.00±1.15a 4.47±1.31a 4.17±1.21a
T3 8.57±1.26b 22.27±1.63a 18.37±1.21a 4.5a 7.30±1.48a
根数
Root number
T1 3.00b 5.00±1.00b 2.67±1.28c _ _
T2 18.33±1.48a 2.00±1.00b 26.67±1.65a 4.00±1.38a 3.00±1.20a
T3 17.00±1.26a 12.33±1.28a 18.33±1.15b 3a 1.33±0.83a

Table 4

Effects of different IBA concentrations on root morphology of ‘Gala’ apple homozygous lines"

根系形态
Root morphology
培养基
Medium
株系 Line
DH2-1 DH2-2 DH2-3 DH2-4 DH2-5 DH2-6 DH2-7 DH2-8 DH2-9 DH2-10
生根率
Root rate (%)
T1 6.67 100 20 _ 6.67 80 100 53.33 66.67 20
T2 60 100 66.67 100 _ 100 100 73.33 86.67 60
T3 13.33 90 80 86.67 13.33 100 100 73.33 86.67 86.67
根长
Root length
(cm.plant-1)
T1 4.65±0.97a 1.70±0.67b 2.93±0.49b _ 5.9a 4.27±0.88b 0.57±0.39b 32.60±1.05a 9.50±1.25a 7.53±1.31b
T2 6.43±1.47a 1.63±0.78b 1.87±1.19b 29.43±1.80a _ 8.90±1.07a 2.50±1.02a 30.00±1.10a 8.93±1.25a 8.23±1.76b
T3 1.5a 5.77±1.17a 13.17±1.20a 14.83±1.40b 5.85±1.18a 9.40±1.15a 3.67±0.71a 31.33±1.28a 10.93±1.54a 22.10±1.31a
根数
Root number
T1 1.50±0.89b 24.67±1.65b 3.67±1.15a _ 1a 9.33±0.83c 16c 9.00±1.20b 5.67±1.45a 1.33±0.83b
T2 17.00±1.66a 39.67±1.67ab 1.67±0.83a 4.00±1.38a _ 42.33±1.82a 29.33±1.83b 21.67±1.61a 9.67±1.45a 5.00±1.20b
T3 1b 51.67±2.42a 2.33±0.83a 6.00±1.38a 1a 34.67±1.28b 43.67±1.73a 8.00±1.59b 12.00±1.74a 22.33±1.86a
根系形态
Root morphology
培养基
Medium
株系 Line
DH2-11 DH2-12 DH2-13 DH2-14 DH2-15 DH2-16 DH2-17 DH2-18 DH2-19 DH2-20
生根率
Root rate(%)
T1 66.67 20 80 6.67 53.33 _ 6.67 93.33 73.33 6.67
T2 100 100 100 73.33 66.67 20 53.33 100 73.33 86.67
T3 93.33 53.33 100 60 53.33 _ 13.33 100 93.33 66.67
根长
Root length
(cm.plant-1)
T1 14.5±1.62b 12.7±1.26b 1.33±0.69c 4.8b 14.27±1.46a _ 4.5b 7.60±1.30c 13.43±1.54a 13.8a
T2 20.7±1.40a 35.27±1.78a 3.83±1.18b 17.33±1.63a 10.23±1.25a 3.43±1.02 11.77±1.40a 16.10±1.72b 14.43±1.38a 18.40±1.57a
T3 20.7±1.40a 23.2±1.90b 6.27±0.96a 6.40±1.36b 9.80±1.26a _ 3.20±1.46b 23.83±1.42a 11.07±1.33a 14.77±1.48a
根数
Root number
T1 3.00±1.20b 2.33±0.83b 11.67±0.83b 1a 13.67±1.36a _ 1b 5.00±1.00b 3.33±1.15b 27c
T2 10.33±1.36a 11.33±1.15a 18.67±1.59ab 6.33±1.36a 7.00±1.63b 1.33±0.83 2.67±0.83a 8.33±1.67ab 3.67±1.15b 86.67±2.05a
T3 5.33±1.59ab 3.00±1.20b 22.33±1.71a 5.33±1.48a 5.00±1.26b _ 1.50±0.89ab 14.33±1.61a 16.00±1.53a 59.67±2.50b

Fig. 3

Plants traits of apple homozygous genotype lines"

Table 5

Plant traits of ‘Red Star’ apple homozygous genotype"

株系
Line
叶数
Leave number
根数
Root number
根长
Root length (cm)
株高
Plant height (cm)
叶柄长
Petiole length (cm)
叶形指数
Leaf shape index
DH0-1 27.00±1.00a 17.67±1.56a 4.27±0.91a 3.70±0.91ab 0.83±0.49a 1.66±0.52b
DH0-2 12.33±1.45b 4.33±1.28c 5.73±1.15b 2.37±0.80c 0.5±0.46c 2.07±0.49a
DH0-3 22.33±1.28a 10.67±1.28b 18.17±1.89a 4.13±0.80a 0.80±0.46a 1.60±0.51b
DH0-4 26.67±1.71a 18.67±1.56a 3.17±0.85b 3.47±0.71abc 0.87±0.39a 1.74±0.54b
DH0-5 15.00±1.00b 8.00±1.00bc 3.53±0.91b 2.57±0.86bc 0.63±0.39bc 1.71±0.37b
DH0-6 26.00±1.84a 11.00±1.38b 2.87±0.49b 4.57±0.49a 0.7±0.46b 1.68±0.59b
DH0-7 22.67±1.28a 22.33±1.59a 2.67±1.08b 3.67±1.01ab 0.77±0.39a 1.88±0.67ab

Table 6

Plant traits of ‘Fuji’ apple homozygous genotype"

株系
Line
叶数
Leave number
根数
Root number
根长
Root length(cm)
株高
Plant height (cm)
叶柄长
Petiole length (cm)
叶形指数
Leaf shape index
DH1-1 15.33±1.32b 17.67±1.56b 7.93±0.87b 1.97±0.67d 0.83±0.39bc 1.90±0.63ab
DH1-2 16.00±1.38b 12.33±1.28c 22.27±1.63a 2.23±0.63cd 1.53±0.77a 1.61±0.41b
DH1-3 17.67±1.15ab 26.00±1.53a 19.00±1.56a 3.07±0.69ab 1.17±0.53ba 1.58±0.73b
DH1-4 22.67±1.28a 4.00±1.38d 4.47±1.32b 2.57±0.59bc 0.87±0.39bc 2.12±0.55a
DH1-5 22.33±1.65a 1.33±0.83d 4.43±1.55b 3.33±0.72a 0.70±0.58c 1.52±0.57b

Table 7

Plant traits of ‘Gala’ apple homozygous genotype"

株系
Line
叶数
Leave number
根数
Root number
根长
Root length(cm)
株高
Plant height
叶柄长
Petiole length (cm)
叶形指数
Leaf shape index
DH2-1 13.67±1.48gh 17.00±1.66ef 6.43±1.47ghi 1.70±0.46g 0.70±0.46ef 2.15±0.60bc
DH2-2 20.00±1.00defg 41.67±1.52b 6.33±1.01ghi 5.57±1.01a 1.27±0.59ab 2.29±0.57b
DH2-3 32.33±1.83abc 3.67±1.15hij 13.17±1.20f 3.17±0.71d 1.0±0.67bcde 3.07±0.68a
DH2-4 36.67±2.30a 5.00±1.00ghij 27.17±2.08bc 2.97±0.86de 1.33±0.39a 1.74±0.34defg
DH2-5 11.33±1.36h 1j 5.87±1.05ghi 1.70±0.70g 0.57±0.39f 1.69±0.75efg
DH2-6 21.33±1.28defg 35.67±1.15c 9.97±0.98fgh 3.20±0.71d 0.80±0.64cdef 2.21±0.45b
DH2-7 18.67±1.28defgh 43.67±1.72b 35.27±1.78a 5.10±0.58ab 1.10±0.46abc 2.07±0.51bcd
DH2-8 20.67±1.93defg 21.67±1.61de 3.67±0.71i 1.67±0.53g 0.80±0.64cdef 1.92±0.68bcdef
DH2-9 19.33±1.45defgh 8.00±1.26ghi 11.67±1.40fg 4.10±0.46c 0.83±0.53cdef 1.63±0.56fg
DH2-10 20.00±1.53defg 5.00±1.20ghij 22.10±1.31cd 2.20±0.64fg 0.83±0.49cdef 1.92±0.54bcdef
DH2-11 17.33±1.05efgh 10.00±1.44gh 12.53±1.31f 2.90±0.64de 0.90±0.46cde 1.40±0.45g
DH2-12 27.00±1.53bcd 11.33±1.15fg 19.63±1.36de 2.90±0.64de 0.73±0.53def 1.58±0.47fg
DH2-13 21.67±1.05defg 24.67±1.28d 4.93±1.47hi 1.77±0.53g 0.70±0.46ef 2.21±0.37b
DH2-14 25.00±1.38cde 6.33±1.36ghij 9.17±1.46fghi 2.53±0.53def 0.83±0.63cdef 2.12±0.59bc
DH2-15 20.67±1.36defg 4.00±1.00hij 14.89±1.28ef 2.47±0.39ef 0.93±0.39cde 1.80±0.55cdef
DH2-16 15.33±1.36fgh 1.33±0.83j 3.43±1.02i 3.17±0.59d 1.03±0.39bcd 2.29±0.59b
DH2-17 21.00±1.26defg 2.67±0.83ij 11.77±1.40fg 2.40±0.56ef 0.83±0.49cdef 2.11±0.39bc
DH2-18 34.33±1.78ab 11.00±1.20fg 9.87±1.03fgh 3.07±0.67de 0.80±0.58cdef 2.07±0.49bcd
DH2-19 25.00±1.38cde 11.33±1.68fg 11.17±1.31fg 3.17±0.71d 0.90±0.46cde 2.00±0.44bcde
DH2-20 23.67±1.61def 85.67±2.16a 30.00±1.10b 4.60±0.67bc 1.03±0.53bcd 2.21±0.53b

Fig. 4

Leaf traits of different ploidy in apple homozygous genotype lines"

Fig. 5

Transplanted plants traits of ‘Red Star’, ‘Fuji’, ‘Gala’ apple homozygous genotype lines"

[1] GERMANÀ M A.oubled haploid production in fruit crops. DPlant Cell, Tissue and Organ Culture, 2016, 86(2): 131-146.
[2] 王炜, 陈琛, 欧巧明, 叶春雷, 罗俊杰. 小麦花药培养的研究和应用. 核农学报, 2016, 30(12): 2343-2354.
doi: 10.11869/j.issn.100-8551.2016.12.2343
WANG W, CHEN C, OU Q M, YE C L, LUO J J.Research and application of wheat anther culture.Journal of Nuclear Agricultural Sciences, 2016, 30(12): 2343-2354. (in Chinese)
doi: 10.11869/j.issn.100-8551.2016.12.2343
[3] CARDOSO J C, MARTINELLI A P, GERMANÀ M A, LATADO R R.In vitro anther culture of sweet orange (Citrus sinensis L. Osbeck) genotypes and of a C. clementina × C. sinensis ‘Hamlin’ hybrid. Plant Cell, Tissue and Organ Culture, 2014, 117(3): 455-464.
[4] ZHAO J, ZOU X X, ZHANG Z Q, YANG B Z, ZHOU S D.Influences of carbon sources and plant growth regulators on anther culture efficiency of pepper.Agricultural Science and Technology, 2010, 11(4): 102-105.
[5] HÖFER M.In vitro androgenesis in apple. Gartenbauwissenschaft, 2003, 60(1): 287-292.
[6] 李佳. 百合单倍体培养及细胞学观察[D]. 北京: 中国农业科学院, 2011.
LI J.Haploid culture and cytology observation in lilium [D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese)
[7] ZHANG C F, SATO S, TSUKUNI T, SATO M, OKADA H, YAMAMOTO T, WADA M, MATSUMOTO S, YOSHIKAWA N, MIMIDA N, TAKAGISHI K, WATANABE M, CAO Q F, KOMORI S.Elucidating cultivar differences in plant regeneration ability in an apple anther culture.The Horticulture Journal preview, 2016, doi: 10.2503/ hortj.MI-094.
[8] 薛光荣, 牛健哲, 杨振英, 史永忠, 费开韦. 苹果花药培养技术及8个主栽品种的花粉植株培育成功. 中国农业科学, 1990, 23(3): 86-87.
XUE G R, NIU J Z, YANG Z Y, SHI Y Z, FEI K W.The technique of apple anther culture and the successful culture of pollen plantlets of 8 main apple cultivar.Scientia Agricultura Sinica, 1990, 23(3): 86-87. (in Chinese)
[9] ZHANG C, TSUKUNI T, IKEDA M, SATO M, OKADA H, OHASHI Y, MATSUNO H, YAMAMOTOT, WADA M, YOSHIKAWA N, MATSUMOTO S, LI J, MIMIDA N, WATANABE M, SUZUKI A, KOMORI S.Effects of the microspore development stage and cold pre-treatment of flower buds on embryo induction in apple (Malus × domestica Borkh.) anther culture. Journal-Japanese Society for Horticultural Science, 2013, 82(82): 114-124.
[10] 温鑫, 邓舒, 张春芬, 侯丽媛, 石江鹏, 聂园军, 肖蓉, 秦永军, 曹秋芬. ‘嘎啦’苹果花药培养种质创新. 中国农业科学, 2017, 50(14): 2793-2806.
doi: 10.3864/j.issn.0578-1752.2017.14.015
WEN X, DENG S, ZHANG C F, HOU L Y, SHI J P, NIE Y J, XIAO R, QIN Y J, CAO Q F.Regeneration of new germplasms using anther culture of apple cultivar ‘Gala’.Scientia Agricultura Sinica, 2017, 50(14): 2793-2806. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.14.015
[11] HÖFER M. Regeneration of androgenic embryos in apple (Malus× domestica Brokh.) via anther and microspore culture. Acta Physiologiae Plantarum, 2005, 27(4): 709-716.
doi: 10.1007/s11738-005-0075-6
[12] HÖFER M, GRAFE C, BOUDICHEVSKAJA A, LOPEZ A, BUENO M A, ROEN D. Characterization of plant material obtained by in vitro androgenesis and in situ parthenogenesis in apple. Scientia Horticulturae, 2008, 117(3): 203-211.
doi: 10.1016/j.scienta.2008.02.020
[13] HÖFER M, FLACHOWSKY H. Comprehensive characterization of plant material obtained by in vitro androgenesis in apple.Plant Cell, Tissue and Organ Culture, 2015, 122(3): 617-628.
doi: 10.1007/s11240-015-0794-3
[14] 翟衡, 史大川, 束环瑞. 我国苹果产业发展现状与趋势. 果树学报, 2007, 24(3): 355-360.
ZHAI H, SHI D C, SHU H R.Current state and developing trend of apple industry in China.Journal of Fruit Science, 2007, 24(3): 355-360. (in Chinese)
[15] 张春芬, 邓舒, 肖蓉, 孟玉平, 曹秋芬. 苹果花药培养再生植株的倍性鉴定及SSR分析. 园艺学报, 2015, 42(S1): 2580.
ZHANG C F, DENG S, XIAO R, MENG Y P, CAO Q F.Ploidy identification and SSR analysis of regenerated plants in apple anther culture.Acta Horticulturae Sinica, 2015, 42(S1): 2580. (in Chinese)
[16] 任莹. 苹果单倍体育种技术探究[D]. 太原: 山西大学, 2015.
REN Y.Research on Haploid breeding technique in anther culture [D]. Taiyuan: Shanxi University, 2015. (in Chinese)
[17] 蒲富慎.果树种质资源描述符—记载项目及评价标准. 北京: 中国农业出版社, 1990: 23-37.
PU F S.Fruits Germplasm Descripto—Record Items and Evaluation Standards. Beijing: China Agricultural Press, 1990: 23-37. (in Chinese)
[18] 崔佩佩, 刘鹏, 刘佳琪, 王劲松, 武爱莲, 董二伟, 丁玉川, 焦晓燕. 不同养分配比对高粱根系生长及养分吸收的影响. 中国生态农业学报, 2017, 25(11): 1643-1652.
doi: 10.13930/j.cnki.cjea.170300
CUI P P, LIU P, LIU J Q, WANG J S, WU A L, DONG E W, DING Y C, JIAO X Y.Effect of different nutrient co mbinations on root growth and nutrient accumulation in sorghum.Chinese Journal of Eco- Agriculture, 2017, 25(11): 1643-1652.
doi: 10.13930/j.cnki.cjea.170300
[19] ZENG S H, CHEN C W, HONG L, LIU J H, DENG X X.n vitro induction, regeneration and analysis of autotetraploids derived from protoplasts and callus treated with colchicine in Citrus. Plant Cell, Tissue and Organ Culture, 2006, 87(1): 85-93.
doi: 10.1007/s11240-006-9142-y
[20] KAWASE K, YAHATA M, NAKAGANA S, HARAGUCHI K, KUNITAKE H.Selection of autotetraploid and its morphological characteristics in Meiwa Kumquat (Fortunella crassifolia Swingle)(Breeding & Germplasm Resources). Horticultural Research, 1975, 4(11): 141-146.
[21] HÖFER M.In vitro androgenesis in apple-improvement of the induction phase. Plant Cell Reports, 2004, 22(6): 365-370.
doi: 10.1007/s00299-003-0701-y pmid: 14685764
[22] TESTILLANO P, GEORGIEV S, MOGENSEN H L, CORONADO M J, DUMAS C, RISUENO M C, MATTHYS-ROCHON E.Spontaneous chromosome doubling results from nuclear fusion during in vitro maize induced microspore embryogenesis.Chromosoma, 2004, 112(7): 342-349.
doi: 10.1007/s00412-004-0279-3 pmid: 15138769
[23] GRIGGS R, ZHENG M Y.Nuclear fusion during early stage of microspore embryogenesis indicates chromosome doubling in wheat (Triticum aestivum). American Journal of Plant Sciences, 2016, 07(3): 489-499.
[24] 钟晓红, 戴思慧, 马定渭. 核果类果树茎尖培养研究进展. 果树学报, 2003, 20(5): 388-392.
doi: 10.3969/j.issn.1009-9980.2003.05.011
ZHONG X H, DAI S H, MA D W.Advances of research in shoot-tip culture on stone fruit crops.Journal of Fruit Science, 2003, 20(5): 388-392. (in Chinese)
doi: 10.3969/j.issn.1009-9980.2003.05.011
[25] 肖祖飞. 童性对苹果砧木绿枝扦插生根的影响[D]. 北京: 中国农业大学, 2014.
XIAO Z F.Impact of the juvenility on the adventitious rooting of leafy cuttings in apple rootstocks [D]. Beijing: China Agriculture University, 2014. (in Chinese)
[26] KAUSHAL N, MODGIL M, THAKUR M, SHARMA D R .In vitro clonal multiplication of an apple rootstock by culture of shoot apices and axillary buds. Indian Journal of Experimental Biology, 2005, 43(6): 561-565.
pmid: 15991584
[27] DOBRÁNSZKI J, SILVA J A T D. Micropropagation of apple-a review.Biotechnology Advances, 2010, 28(4): 462-488.
doi: 10.1016/j.biotechadv.2010.02.008
[28] 谢璇, 许轲, 谢闽新, 朱元娣. 苹果茎尖培养快繁体系的优化. 植物生理学报, 2015, 51(12): 2152-2156.
doi: 10.13592/j.cnki.ppj.2015.0474
XIE X, XU K, XIE M X, ZHU Y D.Optimization of rapid micropropagation system of apple meristem-tip culture.Plant Physiology Journal, 2015, 51(12): 2152-2156. (in Chinese)
doi: 10.13592/j.cnki.ppj.2015.0474
[29] 陈银全, 沈汉清, 柯昉. 水稻花培育种研究及新进展. 福建农业学报, 1997, 12(2): 6-10.
CHEN Y Q, SHEN H Q, KE F.Studies and advances on rice anther culture breeding.Journal of Fujian Academy of Agricultural Sciences, 1997, 12(2): 6-10. (in Chinese)
[30] VANWYNSBERGHE L, KDE W, COART E, KEULEMANS J.Limited application of homozygous genotypes in apple breeding.Plant Breeding, 2005, 124(4): 399-403.
doi: 10.1111/j.1439-0523.2005.01117.x
[31] OKADA H, OHASHI Y, SATO M, MATSUNO H, YAMAMOTO T, KIM H, TUKUNI T, KOMORI S.Characterization of fertile homozygous genotypes from anther culture in apple.Journal of the American Society for Horticultural Science, 2009, 134(6): 641-648.
doi: 10.1051/fruits:2009034
[32] CAO H, BISWAS MK, LU¨ Y, AMAR MH, TONG Z, XU Q, XU J, GUO W, DENG X.Doubled haploid callus lines of valencia sweet orange recovered from anther culture.Plant Cell, Tissue and Organ Culture, 2011, 104(3): 415-423.
doi: 10.1007/s11240-010-9860-z
[33] GERMANA M A, ALEZA P, CARRERA E, CHEN C, CHIANCONE B, COSTANTINO G, DAMBIER D, DENG X X, FEDERICI C T, FROELICHER Y, GUO W W, IBÁÑEZ V, JUÁREZ S, KWOK K, LURO F, MACHADO M A, NARANJO M A, NAVARRO L, OLLITRAULT P, RÍOS G, ROOSE M L, TALON M, XU Q, GMITTER JR F G. Cytological and molecular characterization of three gametoclones of Citrus clementina.BMC Plant Biology, 2013, 13(1): 129-150.
doi: 10.1186/1471-2229-13-129 pmid: 3847870
[34] LI Y, LI H, CHEN Z, JI L X, YE M X, WANG J, WANG L, AN X M.Haploid plants from anther cultures of poplar (Populus × beijingensis). Plant Cell, Tissue and Organ Culture, 2013, 114(1): 39-48.
[35] CHEN Z J,HA M,SOLTIS D.Polyploidy: Genome obesity and its consequences.New Phytologist, 2007, 174(4): 717-720.
doi: 10.1111/j.1469-8137.2007.02084.x pmid: 17504455
[36] ADAMS K L, WENDEL J F.Novel patterns of gene expression in polyploidy plants.Trends in Genetics, 2005, 21(10): 539-543.
[37] HA M, KIM E D, CHEN Z J.Duplicate genes increase expression diversity in closely related species and allopolyploids.Proceedings of the National Academy of Sciences, 2009, 106(7): 2295-2300.
[38] RIDDLE N C, KATO A, BIRCHLER J A.Genetic variation for the response to ploidy change in Zea mays L. Theoretical and Applied Genetics, 2006, 114(1): 101-111.
doi: 10.1007/s00122-006-0414-z pmid: 17053922
[1] WEN Xin, DENG Shu, ZHANG ChunFen, HOU LiYuan, SHI JiangPeng, NIE YuanJun, XIAO Rong, QIN YongJun, CAO QiuFen. Regeneration of New Germplasms Using Anther Culture of Apple Cultivar ‘Gala’ [J]. Scientia Agricultura Sinica, 2017, 50(14): 2793-2806.
[2] JIE Kai-Dong-1, WANG Hui-Qin-1, WANG Xiao-Pei-1, LIANG Wu-Jun-1, XIE Zong-Zhou-1, YI Hua-Lin-1, DENG Xiu-Xin-1, Grosser Jude W2, GUO Wen-Wu-1. Extensive Citrus Triploid Breeding by Crossing Monoembryonic Diploid Females with Allotetraploid Male Parents [J]. Scientia Agricultura Sinica, 2013, 46(21): 4550-4557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!