Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (16): 3395-3402.doi: 10.3864/j.issn.0578-1752.2011.16.012

• STORAGE·FRESH-KEEPING·PROCESSING • Previous Articles     Next Articles

Development and Application of an IAC-PCR Kit for the Rapid Detection of Salmonella spp.

LI  Xiao-Ling, LIU  Bin, DAN  Xian-Long, WANG  Da-Peng, ZHOU  Min, SHI  Xian-Ming   

  1. 上海交通大学农业与生物学院/中美食品安全联合研究中心/陆伯勋食品安全研究中心
  • Received:2011-01-19 Revised:2011-04-21 Online:2011-08-15 Published:2011-05-04

Abstract: 【Objective】The purpose of this study was to develop a rapid and accurate detection kit for Salmonella spp. using polymerase chain reaction (PCR) with an internal amplification control (IAC). 【Method】 The specific primers and IAC were designed according to the conserved genes invA and stn in Salmonella spp. The optimization of the components and the evaluation of the parameters for the kit were carried out in this study. 【Result】 The experiment indicated that the specific 362 bp DNA fragment was amplified against 147 reference strains of Salmonella spp., while 28 strains of non-Salmonella only showed the 520 bp amplified band of IAC. The detection limit of the kit for purified genomic DNA was 8.0 fg/PCR. It was confirmed in artificial contamination assay that Salmonella spp. could be detected by the kit after 8-10 h enrichment when 4-5 CFU germs were inoculated in 10 mL milk. Thirty food samples were detected by the IAC-PCR kit in this study, and the experiments demonstrated that IAC could successfully indicate false-negative results. Besides, the kit worked well after being frozen-thawed for 60 times or stored at -20℃ for one year.【Conclusion】The IAC-PCR detection kit developed in this study has good performances in specificity, sensitivity, stability and accuracy and is suitable for the rapid and accurate detection of Salmonella spp.

Key words: Salmonella spp., PCR, IAC, detection kit

CLC Number: 

  • T201

[1]Matyas B, Cronquist A, Cartter M, Tobin-D'Angelo M, Blythe D, Smith K, Lathrop S, Morse D, Cieslak P, Dunn J, Holt K G, Henao O L, Fullerton K E, Mahon B E, Hoekstra R M, Griffin P M, Tauxe R V, Bhattarai A. Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food. Jama-Journal of the American Medical Association, 2010, 303(21): 2130-2132.

[2]Vaishnavi C, Kaur S, Singh K. Evaluation of an in-house rapid diagnostic method for detection of Salmonella enterica serovar Typhi in fecal specimens. Trop Gastroenterol, 2006, 27(1): 19-21.

[3]杨爱萍,黄金林.单抗酶联试剂盒与PCR方法快速检测沙门氏菌的比较.畜牧与兽医,2003(12): 21-22.

Yang A P, Huang J L. Comparison of McAb-ELISA kit and PCR to rapidly detect Salmonella. Animal Husbandry and Veterinary Medicine, 2003(12): 21-22. (in Chinese)

[4]王虎虎,徐幸莲. 冰鲜鸡肉中致病菌三重 PCR 检测方法的建立.中国农业科学,2010,43(17): 3608-3615.

Wang H H, Xu X L. Detection of pathogenic microorganisms in fresh chicken meat by multiplex PCR. Scientia Agricultura Sinica, 2010, 43(17): 3608-3615. (in Chinese)

[5]Chen J, Zhang L D, Paoli G C, Shi C L, Tu S I, Shi X M. A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis. International Journal of Food Microbiology, 2010, 137(2/3): 168-174.

[6]陆长勇,施春雷,张春秀,陈  婧,史贤明. 基于单碱基延伸标签反应的常见食源性致病菌基因芯片检测方法的建立. 生物工程学报,2009, 25(4): 554-559.

Lu C Y, Shi C L, Zhang C X, Chen J, Shi X M. Development of single base extension-tags microarray for the detection of food-borne pathogens. Chinese Journal of Biotechnology, 2009, 25(4): 554-559. (in Chinese)

[7]孔繁德,陈  琼,徐淑菲,彭海滨. 沙门氏菌通用PCR快速检测试剂盒的研制与应用.福建畜牧兽医, 2007(7): 27-30. 

Kong F D, Chen Q, Xu S F, Peng H B. Research and application on rapid detection kit of Salmonella by universal PCR. Fujian Journal of Animal Husbandry and Veterinary, 2007(7): 27-30. (in Chinese)

[8]孔繁德,彭海滨,徐淑菲,陈  琼,陆承平. 沙门氏菌实时荧光定量PCR检测试剂盒的研制与应用.中国兽医科学,2006, 36(8): 625-629.

Kong F D, Peng H B, Xu S F, Chen Q, Lu C P. Development and application of the real-time fluorescence quantitative PCR detection kit for Salmonella. Veterinary Science in China, 2006, 36(8): 625-629. (in Chinese)

[9]陈金顶,索青利,廖  明,辛朝安. 沙门氏菌的invA基因序列分析与分子检测.中国人兽共患病杂志,2004, 20(10): 868-871.

Chen J D, Suo Q L, Liao M, Xin Z A. DNA sequence analysis and molecular detection of invA gene from salmonella spp. Chinese Journal of Zoonoses, 2004, 20(10): 868-871. (in Chinese)

[10]D’Souza D H, Critzer F J, Golden D A. Real-time reverse-transcriptase polymerase chain reaction for the rapid detection of Salmonella using invA primers. Foodborne Pathogens and Disease, 2009, 6(9): 1097-1106.

[11]Vazquez-Novelle M D, Pazos A J, Abad M, Sánchez J L, Pérez-Parallé M L. Eight-hour PCR-based procedure for the detection of Salmonella in raw oysters. FEMS Microbiology Letters, 2005, 243(1): 279-283.

[12]Fan W, Hamilton T, Webster-Sesay S, Nikolich M P, Lindler L E. Multiplex real-time SYBR Green I PCR assay for detection of tetracycline efflux genes of Gram-negative bacteria. Molecular and Cellular Probes, 2007, 21(4): 245-256.

[13]Malorny B, Hoorfar J, Hugas M, Heuvelinkd A, Fache P, Ellerbroeka L, Bungea C, Dorna C, Helmuth R. Interlaboratory diagnostic accuracy of a Salmonella specific PCR-based method. International Journal of Food Microbiology, 2003, 89(1/2): 241-249.

[14]刘  斌,史贤明. 扩增内标在沙门氏菌PCR检测方法中的应用. 微生物学通报,2006,33(2): 156-161.

Liu B, Shi X M. Application of internal amplification control in the PCR detection method for food-borne Salmonella. Microbiology, 2006, 33(2): 156-161. (in Chinese)

[15]Ballagi-Pordány A, Belák S. The use of mimics as internal standards to avoid false negatives in diagnostic PCR. Molecular and Cellular Probes, 1996, 10(3): 159-164.

[16]Espy M J, Uhl J R, Sloan L M, Buckwalter S P, Jones M F, Vetter E A, Yao J D C, Wengenack N L, Rosenblatt J E, Cockerill F R, Smith T F. Real-time PCR in clinical microbiology: Applications for routine laboratory testing. Clinical Microbiology Reviews, 2006, 19(3): 165-256.

[17]石晓路. 沙门氏菌荧光PCR快速检测方法的建立与应用[D]. 武汉:华中农业大学,2003.

Shi X L. Development and Application of Fluorescence PCR Methods for Rapid Detection of Salmonella [D]. Wuhan: Central China Agricultural University, 2003. (in Chinese)

[18]Kalia A, Rattan A, Chopra P. A method for extraction of high-quality and high-quantity genomic DNA generally applicable to pathogenic bacteria. Analytical Biochemistry, 1999, 275(1): 1-5.

[19]Malorny B, Hoorfar J, Bunge C, Helmuth R. Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Applied and Environmental Microbiology, 2003, 69(1): 290-296.

[20]Rahn K, Grandis S A D, Clarke R C, McEwen S A, Galin J E, Ginocchio C, Curtiss R, Gyles C L. Amplification of an invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Molecular and Cellular Probes, 1992, 6: 271-279. 

[21]David R L, Marta H, Teresa E, Jeffrey H, Maria P. A rapid and direct real time PCR-based method for identification of Salmonella spp. Journal of Microbiological Methods, 2003, 54: 381-390.

[22]Wilson I G. Inhibition and facilitation of nucleic acid amplification. Applied and Environmental Microbiology, 1997, 63(10): 3741-3751.

[23]Moganedi K L M, Goyvaerts E M A, Venter S N, Sibara M M. Optimisation of the PCR-invA primers for the detection of Salmonella in drinking and surface waters following a pre-cultivation step. Water SA, 2007, 33(2): 195-202.

[24]Ferretti R, Mannazzu I, Cocolin L, Comi G, Clementi F. Twelve-hour PCR-based method for detection of Salmonella spp. in food. Applied and Environmental Microbiology, 2001, 67(2): 977-978.

[25]Murphy N M, Mclauchlin J, Ohai C, Grant K A. Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica. International Journal of Food Microbiology, 2007, 120(1/2): 110-119.

[26]Long F, Zhu X N, Zhang Z M, Shi X M. Development of a quantitative polymerase chain reaction method using a live bacterium as internal control for the detection of Listeria monocytogenes. Diagnostic Microbiology and Infectious Disease, 2008, 62(4): 374-381.
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[3] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[4] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[5] GENG RenHao,LIU Bo,WANG Fang,LUO YuFeng,QU HongFei,FAN XueZheng,QIN YuMing,DING JiaBo,XU GuanLong,SHEN QingChun,QIN AiJian. Establishment and Application of PCR Assay for Mycoplasma Contamination in Cell Culture and Live Virus Vaccine [J]. Scientia Agricultura Sinica, 2022, 55(7): 1458-1468.
[6] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[7] CUI JiangKuan,REN HaoHao,CAO MengYuan,CHEN KunYuan,ZHOU Bo,JIANG ShiJun,TANG JiHua. SCAR-PCR Rapid Molecular Detection Technology of Heterodera zeae [J]. Scientia Agricultura Sinica, 2022, 55(17): 3334-3342.
[8] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[9] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[10] LI XiaoJing,ZHANG SiYu,LIU Di,YUAN XiaoWei,LI XingSheng,SHI YanXia,XIE XueWen,LI Lei,FAN TengFei,LI BaoJu,CHAI ALi. Establishment and Application of Rapid Quantitative Detection of Viable Plasmodiophora brassicae by PMAxx-qPCR Method [J]. Scientia Agricultura Sinica, 2022, 55(10): 1938-1948.
[11] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[12] Can CHEN,NanNan HAN,Yang LIU,XiaoWei SHI,HongQi SI,ChuanXi MA. Analysis of Copy Number Variation of Glu-3 Locus in Common Wheat [J]. Scientia Agricultura Sinica, 2021, 54(6): 1092-1103.
[13] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[14] XIAO Fang,LI Jun,WANG HaoQian,ZHAI ShanShan,CHEN ZiYan,GAO HongFei,LI YunJing,WU Gang,ZHANG XiuJie,WU YuHua. Establishment and Application of A Duplex ddPCR Method to Quantify the NK603/zSSIIb Copy Number Ratio in Transgenic Maize NK603 [J]. Scientia Agricultura Sinica, 2021, 54(22): 4728-4739.
[15] ZHAO LiQun,QIU YanHong,ZHANG XiaoFei,LIU Hui,YANG JingJing,ZHANG Jian,ZHANG HaiJun,XU XiuLan,WEN ChangLong. The Detection of Citrullus lanatus Cryptic Virus Using TaqMan-qPCR Method [J]. Scientia Agricultura Sinica, 2021, 54(20): 4337-4347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!