Scientia Agricultura Sinica ›› 2010, Vol. 43 ›› Issue (3): 535-541 .doi: 10.3864/j.issn.0578-1752.2010.03.013

• HORTICULTURE • Previous Articles     Next Articles

Effects of BTH, SA, and SiO2 Treatment on Disease Resistance and Leaf HRGP and Lignin Contents of Melon Seedlings

CHEN Nian-lai, HU Min, QIAO Chang- ping, NAI Xiao-ying, WANG Rui
  

  1. (甘肃农业大学农学院)
  • Received:2009-05-18 Revised:2009-07-08 Online:2010-02-10 Published:2010-02-10

Abstract:

【Objective】 The objective of the experiment was to investigate the inducing effects of benzothiadiazole (BTH), salicylic acid (SA) and nanometer silicon (SiO2) spraying on disease resistance of melon to powdery mildew and its relationship to hydroxyproline-rich glycoprotein(HRGP) and lignin contents in leaves. 【Method】 Two melon cultivars with different powder mildew susceptibilities, Yindi and Kalakesai, were employed as materials. At the fifth day after BTH, SA and SiO2 spraying, seedlings were inoculated with Sphaerotheca fuliginea, and disease indexes, leaf lignin and HRGP contents were determined for four times at alternate days. 【Result】 BTH and SA spraying significantly decreased disease indexes of powdery mildew in melon seedlings especially by BTH spraying and on the resistant cultivar, while SiO2 spraying showed a significant effect only in the initial days after treatment. Leaf lignin and HRGP content increased significantly and systemically in melon seedlings induced by Sphaerotheca fuliginea inoculation and BTH, SA spraying, while SiO2 had no such effect. The accumulation of lignin and HRGP in leaf cell wall was synchronous obviously, and was higher in the resistant cultivar than in the susceptible one. 【Conclusion】 The accumulation of HRGP and the deposition of lignin in cell wall of melon leaves are related to its resistant reactions to powdery mildew, and it is one of the important biochemical mechanisms in melon-Sphaerotheca fuliginea interactions.

Key words: Cucumis melo L., powdery mildew, benzothiadiazole, salicylic acid, SiO2, lignin, HRGP

[1] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[2] FENG ZiHeng,SONG Li,ZHANG ShaoHua,JING YuHang,DUAN JianZhao,HE Li,YIN Fei,FENG Wei. Wheat Powdery Mildew Monitoring Based on Information Fusion of Multi-Spectral and Thermal Infrared Images Acquired with an Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2022, 55(5): 890-906.
[3] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[4] GENG WenJie,LI Bin,REN BaiZhao,ZHAO Bin,LIU Peng,ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[5] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[6] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[7] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[8] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[9] LIU Lian,TANG ZhiPeng,LI FeiFei,XIONG Jiang,LÜ BiWen,MA XiaoChuan,TANG ChaoLan,LI ZeHang,ZHOU Tie,SHENG Ling,LU XiaoPeng. Fruit Quality in Storage, Storability and Peel Transcriptome Analysis of Rong’an Kumquat, Huapi Kumquat and Cuimi Kumquat [J]. Scientia Agricultura Sinica, 2021, 54(20): 4421-4433.
[10] DING Xi,ZHAO KaiXi,WANG YueJin. Expression of Stilbene Synthase Genes from Chinese Wild Vitis quinquangularis and Its Effect on Resistance of Grape to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(2): 310-323.
[11] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
[12] DONG HeHe, LUO YongLi, LI WenQian, WANG YuanYuan, ZHANG QiuXia, CHEN Jin, JIN Min, LI Yong, WANG ZhenLin. Effects of Different Spring Nitrogen Topdressing Modes on Lodging Resistance and Lignin Accumulation of Winter Wheat [J]. Scientia Agricultura Sinica, 2020, 53(21): 4399-4414.
[13] QIN XiuJuan,QI JingJing,DOU WanFu,CHEN ShanChun,HE YongRui,LI Qiang. Identification of Rboh Family and the Response to Hormone and Citrus Bacterial Canker in Citrus [J]. Scientia Agricultura Sinica, 2020, 53(20): 4189-4203.
[14] JIANG Xu,CUI HuiTing,WANG Zhen,ZHANG TieJun,LONG RuiCai,YANG QingChuan,KANG JunMei. Cloning and Function Analysis of MsNST in Lignin and Cellulose Biosynthesis Pathway from Alfalfa [J]. Scientia Agricultura Sinica, 2020, 53(18): 3818-3832.
[15] Fei QI,Shu LIN,MengFei SONG,MengRu ZHANG,ShuYan CHEN,NaiXin ZHANG,JinFeng CHEN,QunFeng LOU. Screening and Identification of Cucumber Mutant Resistant to Powdery Mildew [J]. Scientia Agricultura Sinica, 2020, 53(1): 172-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!