中国农业科学 ›› 2022, Vol. 55 ›› Issue (3): 467-478.doi: 10.3864/j.issn.0578-1752.2022.03.004
陈婷婷(),符卫蒙(),余景,奉保华,李光彦,符冠富,陶龙兴
收稿日期:
2021-04-06
接受日期:
2021-06-21
出版日期:
2022-02-01
发布日期:
2022-02-11
通讯作者:
符冠富,陶龙兴
作者简介:
陈婷婷,E-mail: 基金资助:
CHEN TingTing(),FU WeiMeng(),YU Jing,FENG BaoHua,LI GuangYan,FU GuanFu,TAO LongXing
Received:
2021-04-06
Accepted:
2021-06-21
Online:
2022-02-01
Published:
2022-02-11
Contact:
GuanFu FU,LongXing TAO
摘要: 目的 近年来,彩色稻因其独特的外观和特殊的营养价值在观光农业和专用营养大米产业中快速发展。本研究旨在阐明彩色稻叶片光合作用对光的响应机理。 方法 以4个叶色不同的水稻品种,包括深紫叶(deep purple,DP),淡绿叶(pale green,PG),深绿叶/常规叶色(dark green,DG)及淡紫叶(pale purple,PP)为材料,研究不同叶色叶片光合作用的变化特征,并揭示其作用机制。 结果 深紫叶水稻叶片叶绿素、类胡萝卜素含量最高,其次分别是深绿叶及淡紫叶水稻品种,而淡绿叶水稻叶片叶绿素、类胡萝卜素含量最低。淡绿叶水稻叶片实际光量子效率(PSII)、净光合速率、核酮糖-1,5-二磷酸羧化酶(Rubisco)活性和干物质积累量最高,显著高于其他品种,但其过氧化氢和丙二醛含量显著低于其他叶色水稻品种。深紫叶与深绿叶水稻叶片叶绿素、类胡萝卜素含量没有显著性差异,但深紫叶水稻叶片PSI和PSII实际荧光量子效率、净光合速率、Rubisco活性均显著高于深绿叶水稻。相应地,深紫叶水稻叶片抗氧化酶活性显著高于深绿叶水稻,但其过氧化氢和丙二醛含量显著低于深绿叶水稻,推测与深紫叶水稻叶片花青素含量显著高于深绿叶水稻有关。外源喷施花青素试验进一步证实了这个假设,即外源花青素可一定程度上降低过氧化氢含量,提高叶片光合速率。 结论 花青素可减轻自然条件下光量子过剩对水稻叶片光合作用的抑制,研究结果可为水稻高光效育种及彩色稻产量、品质协同提高栽培技术研发提供理论基础。
陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478.
CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content[J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
表1
供试水稻品种的生育期"
供试品种 Variety | 平均生育期 Average whole growing period (d) | 播种日期 Sowing date (M-D) | 抽穗日期 Heading date (M-D) | 收获日期 Harvest date (M-D) | |||
---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||
深紫叶DP | 140 | 05-10 | 05-20 | 08-08 | 08-20 | 09-24 | 10-08 |
淡绿叶PG | 134 | 05-10 | 05-20 | 08-01 | 08-12 | 09-19 | 10-02 |
深绿叶/常规叶色DG | 134 | 05-10 | 05-20 | 08-02 | 08-12 | 09-19 | 10-02 |
淡紫叶PP | 137 | 05-10 | 05-20 | 08-04 | 08-16 | 09-22 | 10-05 |
表3
水稻叶片花青素含量与光合荧光参数、抗氧化酶活性、过氧化物含量、干物质重和产量的相关性"
与相关 Correlated with | 花青素含量 Anthocyanin content | 叶绿素含量 Chlorophyll content | 类胡萝卜素含量 Carotenoids content |
---|---|---|---|
光合荧光参数 Photosynthesis and chlorophyll fluorescence parameters | |||
净光合速率Net photosynthetic rate | 0.877* | 0.613 | 0.016 |
核酮糖-1,5-二磷酸羧化酶活 Rubisco activity | 0.995** | 0.427 | 0.250 |
最大荧光量子效率 Maximum fluorescence quantum efficiency | 0.019 | 0.261 | 0.179 |
PSI实际光量子效率 Actual fluorescence quantum efficiency of PSI | 0.956** | 0.605 | 0.018 |
PSII实际光量子效率 Actual fluorescence quantum efficiency of PSII | 0.983** | 0.386 | 0.136 |
抗氧化酶类Antioxidant enzyme | |||
过氧化物酶POD activity | 0.946** | 0.482 | 0.108 |
超氧化物歧化酶活性SOD activity | 0.996** | 0.360 | 0.223 |
过氧化氢酶CAT activity | 0.965** | 0.293 | 0.112 |
过氧化物含量Peroxides content | |||
过氧化氢含量H2O2 content | -0.998** | -0.400 | -0.235 |
丙二醛含量MDA content | -0.991** | -0.438 | -0.320 |
其他Others | |||
干物质重 Dry matter weight | 0.974** | 0.543 | 0.277 |
产量Yield | 0.841* | 0.453 | 0.218 |
[1] |
HUANG J, PAN Y, CHEN H, ZHANG Z, FANG C, SHAO C, AMJAD H, LIN W, LIN W.Physiochemical mechanisms involved in the improvement of grain-flling, rice quality mediated by related enzyme activities in the ratoon cultivation system. Field Crops Research, 2020, 258: 107962.
doi: 10.1016/j.fcr.2020.107962 |
[2] | 肖人鹏, 唐永群, 刘强明, 张现伟, 姚雄, 文明, 张巫军, 段秀建, 李经勇. 优质红米恢复系渝恢 9341 的选育与应用. 杂交水稻, 2021, 36(1): 28-30. |
XIAO R P, TANG Y Q, LIU Q M, ZHANG X W, YAO X, WEN M, ZHANG W J, DUAN X J, LI J Y.Breeding and application of restorer line Yuhui 9341 with red grains and good quality in rice. Hybrid Rice, 2021, 36(1): 28-30. (in Chinese) | |
[3] | 谢成林, 唐建鹏, 姚义, 孔祥英, 闵思桂, 韩光明. 彩色稻新品种(系)农艺性状比较与分析. 中国稻米, 2019, 25(5): 87-92. |
XIE C L, TANG J P, YAO Y, KONG X Y, MIN S G, HAN G M.Comparison and analysis of agronomic trait of new colored rice. China Rice, 2019, 25(5): 87-92. (in Chinese) | |
[4] |
LI Y, REN B, GAO L, DING L, JIANG D, XU X, SHEN Q, GUO S.Less chlorophyll does not necessarily restrain light capture ability and photosynthesis in a chlorophyll-deficient rice mutant. Journal of Agronomy and Crop Science, 2013, 199(1): 49-56.
doi: 10.1111/jac.2013.199.issue-1 |
[5] | 周振翔, 李志康, 陈颖, 王志琴, 杨建昌, 顾骏飞. 叶绿素含量降低对水稻叶片光抑制与光合电子传递的影响. 中国农业科学, 2016, 49(19): 3709-3720. |
ZHOU Z X, LI Z K, CHEN Y, WANG Z Q, YANG J C, GU J F.Effects of reduced chlorophyll content on photoinhibition and photosynthetic electron transport in rice leaves. Scientia Agricultura Sinica, 2016, 49(19): 3709-3720. (in Chinese) | |
[6] | 孙佳莉. 氮素和干旱胁迫对水稻动态光合作用的影响与机理研究[D]. 武汉: 华中农业大学, 2018. |
SUN J L.Studies on the mechanisms for the effects of nitrogen and water deficit on dynamic photosynsthesis in rice crops[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese) | |
[7] | ZHAO X, CHEN T, FENG B, ZHANG C, PENG S, ZHANG X, FU G, TAO L.Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color. Frontiers in Plant Science, 2017, 7: 1968. |
[8] | 胡巍, 高云, 张强, 张彬, 江奕君. 浅绿叶水稻突变体的特性与遗传分析. 植物遗传资源学报, 2021, 22(1): 194-204. |
HU W, GAO Y, ZHANG Q, ZHANG B, JIANG Y J.Genetic analysis and characteristics of pale-green leaf rice mutant. Journal of Plant Genetic Resources, 2021, 22(1): 194-204. (in Chinese) | |
[9] | 王丹英, 章秀福, 邵国胜, 钱前, 徐春梅. 不同叶色水稻叶片的衰老及对光强的响应. 中国水稻科学, 2008, 22(1): 77-81. |
WANG D Y, ZHANG X F, SHAO G S, QIAN Q, XU C M.Leaf senescence of different leaf color rice and its response to light intensity. Chinese Journal of Rice Science, 2008, 22(1): 77-81. (in Chinese) | |
[10] | ZAIDI S H R. 有色稻颖果色素积累的生理生态特点及其与逆境胁迫响应间关系[D]. 杭州: 浙江大学, 2019. |
ZAIDI S H R. Effects of abiotic stress on physiological properties of pigment accumulation in filling grain for color rice (Oryza sativa L.)[D]. Hangzhou: Zhejiang University, 2019. (in Chinese) | |
[11] |
ZHANG C, FU G, YANG X, YANG Y, ZHAO X, CHEN T, ZHANG X, JIN Q, TAO L.Heat stress effects are stronger on spikelets than on flag leaves in rice due to differences in dissipation capacity. Journal of Agronomy and Crop Science, 2016, 202(5): 394-408.
doi: 10.1111/jac.12138 |
[12] |
CISSE A, ZHAO X, FU W, KIM R E R, CHEN T, TAO L, FENG B. Non-photochemical quenching involved in the regulation of photosynthesis of rice leaves under high nitrogen conditions. International Journal of Molecular Sciences, 2020, 21(6): 2115.
doi: 10.3390/ijms21062115 |
[13] |
ARNON D I.Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiology, 1949, 24(1): 1-15.
doi: 10.1104/pp.24.1.1 |
[14] |
WELLBURN A R.The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 1994, 144(3): 307-313.
doi: 10.1016/S0176-1617(11)81192-2 |
[15] | CHANCE B, MAEHLY A.Assay of catalases and peroxidases. Methods in Enzymology, 1955, 2: 764-775. |
[16] |
GIANNOPOLITIS C N, RIES S K.Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 1977, 59(2): 309-314.
doi: 10.1104/pp.59.2.309 |
[17] | 赵世杰, 许长成, 邹琦, 孟庆伟. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994, 30(3): 207-210. |
ZHAO S J, XU C C, ZOU Q, MENG Q W.Improvements of method for measurement of malondialdehvde in plant tissues. Plant Physiology Communication, 1994, 30(3): 207-210. (in Chinese) | |
[18] |
BRENNAN T, FRENKEL C.Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiology, 1977, 59(3): 411-416.
doi: 10.1104/pp.59.3.411 |
[19] |
夏家平, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 李军辉, 刘录祥. 小麦叶绿素缺失突变体Mt135的叶绿体基因差异表达分析. 作物学报, 2012, 38(11): 2122-2130.
doi: 10.3724/SP.J.1006.2012.02122 |
XIA J P, GUO H J, XIE Y D, ZHAO L S, GU J Y, ZHAO S R, LI J H, LIU L X.Differential expression of chloroplast genes in chlorophyll- deficient wheat mutant Mt135 derived from space mutagenesis. Acta Agronomica Sinica, 2012, 38(11): 2122-2130. (in Chinese)
doi: 10.3724/SP.J.1006.2012.02122 |
|
[20] |
ZHAO X, FENG B, CHEN T, ZHANG C, TAO L, FU G.Transcriptome analysis of pale-green leaf rice reveals photosynthetic regulatory pathways. Acta Physiologiae Plantarum, 2017, 39(12): 274.
doi: 10.1007/s11738-017-2571-x |
[21] |
WU Z M, ZHANG X, WANG J L, WAN J M.Leaf chloroplast ultrastructure and photosynthetic properties of a chlorophyll-deficient mutant of rice. Photosynthetica, 2014, 52(2): 217-222.
doi: 10.1007/s11099-014-0025-x |
[22] | 赵霞, 杨华伟, 刘然方, 陈婷婷, 奉保华, 张彩霞, 杨雪芹, 陶龙兴. 水稻热耗散对逆境的响应. 中国水稻科学, 2016, 30(4): 431-440. |
ZHAO X, YANG H W, LIU F R, CHEN T T, FENG B H, ZHANG C X, YANG X Q, TAO L X.Response of heat dissipation in rice to stress. Chinese Journal of Rice Science, 2016, 30(4): 431-440. (in Chinese) | |
[23] | 宋陶玉. 化学诱变水稻叶色突变体的光合生理特性研究[D]. 长沙: 湖南师范大学, 2019. |
SONG T Y.Studies on photosynthetic physiological characteristics of rice leaf color mutants induced by chemical mutants[D]. Changsha: Hunan Normal University, 2019. (in Chinese) | |
[24] |
HOSODA K, SASAHARA H, MATSUSHITA K, TAMURA Y, MIYAJI M, MATSUYAMA H.Anthocyanin and proanthocyanidin contents, antioxidant activity, and in situ degradability of black and red rice grains. Asian-Australasian Journal of Animal Sciences, 2018, 31(8): 1213-1220.
doi: 10.5713/ajas.17.0655 |
[25] |
SHEN X, GUO X, GUO X, ZHAO D, ZHAO W, CHEN J, LI T.PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance. Plant Physiology and Biochemistry, 2017, 112: 302-311.
doi: 10.1016/j.plaphy.2017.01.015 |
[26] |
NAING A H, PARK K I, AI T N, CHUNG M Y, HAN J S, KANG Y W, LIM K B, KIM C K.Overexpression of snapdragon Delila (Del) gene in tobacco enhances antho-cyanin accumulation and abiotic stress tolerance. BMC Plant Biology, 2017, 17(1): 65.
doi: 10.1186/s12870-017-1015-5 |
[27] |
KIM J, LEE W J, VU T T, JEONG C Y, HONG S W, LEE H.High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L. Plant Cell Reports, 2017, 36(8): 1215-1224.
doi: 10.1007/s00299-017-2147-7 |
[28] | 王鸿雪, 刘天宇, 庄维兵, 王忠, 朱林, 渠慎春, 翟恒华. 花青素苷在植物逆境响应中的功能研究进展. 农业生物技术学报, 2020, 28(1): 174-183. |
WANG H X, LIU T Y, ZHUANG W B, WANG Z, ZHU L, QU S C, ZHAI H H.Research advances in the function of anthocyanin in plant stress response. Journal of Agricultural Biotechnology, 2020, 28(1): 174-183. (in Chinese) | |
[29] |
AKHTER D, QIN R, NATH U K, ESHAG J, JIN X, SHI C.A rice gene, OsPL, encoding a MYB family transcription factor confers anthocyanin synthesis, heat stress response and hormonal signaling. Gene, 2019, 699: 62-72.
doi: 10.1016/j.gene.2019.03.013 |
[30] |
STEYN W J, WAND S J E, HOLCROFT D M, JACOBS G. Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. New Phytologist, 2002, 155(3): 349-361.
doi: 10.1046/j.1469-8137.2002.00482.x |
[31] |
ZHANG K M, YU H J, SHI K, ZHOU Y H, YU J Q, XIA X J.Photoprotective roles of anthocyanins in Begonia semperflorens. Plant Science, 2010, 179: 202-208.
doi: 10.1016/j.plantsci.2010.05.006 |
[32] |
HUGHGS N M.Winter leaf reddening in ‘evergreen’ species. New Phytologist, 2011, 190(3): 573-581.
doi: 10.1111/nph.2011.190.issue-3 |
[33] |
AGATI G, TATTINI M.Multiple functional roles of flavonoids in photoprotection. New Phytologist, 2010, 186(4): 786-793.
doi: 10.1111/nph.2010.186.issue-4 |
[34] | 张俊霞, 刘晓鹏, 向极钎. 植物抗氧化系统对逆境胁迫的动态响应. 湖北民族学院学报(自然科学版), 2015, 33(4): 435-439. |
ZHANG J X, LIU X P, XIANG J Q.Dynamic response of antioxidant systems to adversity stress in plants. Journal of Hubei University for Nationalities (Natural Science Edition), 2015, 33(4): 435-439. (in Chinese) | |
[35] |
ZAIDI S H R, ZAKARI S A, ZHAO Q, KHAN A R, SHAH J M, CHENG F M. Anthocyanin accumulation in black kernel mutant rice and its contribution to ROS detoxification in response to high temperature at filling stage. Antioxidants, 2019, 8(11): 510-524.
doi: 10.3390/antiox8110510 |
[36] |
FURBANK R T, QUICK W P, SIRAULT X R R. Improving photosynthesis and yield potential in cereal crops by targeted genetic manipulation: Prospects, progress and challenges. Field Crops Research, 2015, 182: 19-29.
doi: 10.1016/j.fcr.2015.04.009 |
[1] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[2] | 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836. |
[3] | 胡雪华,刘宁宁,陶慧敏,彭可佳,夏晓剑,胡文海. 低温胁迫对番茄幼苗不同叶龄叶片叶绿素荧光成像特性的影响[J]. 中国农业科学, 2022, 55(24): 4969-4980. |
[4] | 万华琴,辜旭,何红梅,汤逸帆,申建华,韩建刚,朱咏莉. 沼液中HCO3-对水稻生长的类CO2施肥效应[J]. 中国农业科学, 2022, 55(22): 4445-4457. |
[5] | 孙保娟,汪瑞,孙光闻,王益奎,李涛,宫超,衡周,游倩,李植良. 转录组及代谢组联合解析茄子果色上位遗传效应[J]. 中国农业科学, 2022, 55(20): 3997-4010. |
[6] | 朱春艳,宋佳伟,白天亮,王娜,马帅国,普正菲,董艳,吕建东,李杰,田蓉蓉,罗成科,张银霞,马天利,李培富,田蕾. NaCl胁迫对不同耐盐性粳稻种质幼苗叶绿素荧光特性的影响[J]. 中国农业科学, 2022, 55(13): 2509-2525. |
[7] | 袁景丽,郑红丽,梁先利,梅俊,余东亮,孙玉强,柯丽萍. 花青素代谢对陆地棉叶片和纤维色泽呈现的影响[J]. 中国农业科学, 2021, 54(9): 1846-1855. |
[8] | 李建鑫,王文平,胡璋健,师恺. 模拟酸雨对番茄光合作用和病害发生的影响及油菜素内酯对其缓解效应[J]. 中国农业科学, 2021, 54(8): 1728-1738. |
[9] | 马银花,莫凯琴,刘璐,李萍芳,金晨钟,杨芳. 过量表达OsRRK1对水稻叶片发育的影响[J]. 中国农业科学, 2021, 54(5): 877-886. |
[10] | 李姜玲,杨澜,阮仁武,李中安. 杂交小麦苗期光合特性分析及其对强优势组合的早期预测[J]. 中国农业科学, 2021, 54(23): 4996-5007. |
[11] | 郑伟,师筝,龙美,廖允成. 黄绿叶突变体冀麦5265yg的光合生理特性分析[J]. 中国农业科学, 2021, 54(21): 4539-4551. |
[12] | 顾博文,杨劲峰,鲁晓玲,吴怡慧,李娜,刘宁,安宁,韩晓日. 连续施用生物炭对花生不同生育时期叶绿素荧光特性的影响[J]. 中国农业科学, 2021, 54(21): 4552-4561. |
[13] | 崔虎亮,贺霞,张前. 不同牡丹品种开花期间花瓣花青素和类黄酮组成的动态变化[J]. 中国农业科学, 2021, 54(13): 2858-2869. |
[14] | 马建, 李丛丛, 黄亚婷, 谢雨黎, 程玲玲, 王建设. 甜瓜种皮颜色控制基因CmSC1的精细定位及候选基因分析[J]. 中国农业科学, 2021, 54(10): 2167-2178. |
[15] | 郝小燕,牟春堂,乔栋,张暄梓,杨文军,赵俊星,张春香,张建新. 葡萄籽原花青素对羔羊瘤胃发酵、血清炎症及抗氧化指标的影响[J]. 中国农业科学, 2021, 54(10): 2239-2248. |
|