中国农业科学 ›› 2021, Vol. 54 ›› Issue (10): 2167-2178.doi: 10.3864/j.issn.0578-1752.2021.10.012
马建1(),李丛丛2(
),黄亚婷1,谢雨黎1,程玲玲1,王建设1(
)
收稿日期:
2020-07-30
接受日期:
2020-09-03
出版日期:
2021-05-16
发布日期:
2021-05-24
通讯作者:
王建设
作者简介:
马建,E-mail: 基金资助:
MA Jian1(),LI CongCong2(
),HUANG YaTing1,XIE YuLi1,CHENG LingLing1,WANG JianShe1(
)
Received:
2020-07-30
Accepted:
2020-09-03
Online:
2021-05-16
Published:
2021-05-24
Contact:
JianShe WANG
摘要:
【目的】通过对甜瓜种皮颜色进行遗传分析及基因精细定位,并推测其候选基因和开发特异分子标记,为下一步该基因的功能研究及合理利用奠定基础。【方法】利用白色种皮材料HP22和黄色种皮材料B8、B150分别配制杂交组合,获得后代遗传分离群体并进行种皮颜色的表型调查及遗传分析,通过基因图位克隆方法完成基因的精细定位。通过对定位区间内注释基因进行编码区序列和功能分析确定关键候选目的基因。【结果】甜瓜白色种皮对黄色种皮为显性,由单显性基因CmSC1控制并表现延迟遗传效应。利用368个黄色种皮F2单株最终将CmSC1精细定位于第5号染色体分子标记S27和S28之间物理距离约95 kb区间内,共包含12个注释基因。其中一个为拟南芥AtTT8同源的编码bHLH转录因子蛋白的MELO3C014406,经序列变异位点分析,黄色种皮材料B8和B150分别在该基因ATG下游第47位碱基处插入碱基A以及在第260位碱基处缺失14 bp导致翻译蛋白提前终止,致使后面功能结构域完全缺失,进而通过开发特异分子标记YS及序列分析,发现65份黄色种皮材料均发生这两种突变形式中的一种,推测MELO3C014406即为控制种皮颜色CmSC1的目的基因。【结论】本研究将控制种皮颜色的CmSC1精细定位于第5染色体95 kb区间内,推测MELO3C014406为最终目的基因,并开发了特异分子标记YS。
马建, 李丛丛, 黄亚婷, 谢雨黎, 程玲玲, 王建设. 甜瓜种皮颜色控制基因CmSC1的精细定位及候选基因分析[J]. 中国农业科学, 2021, 54(10): 2167-2178.
MA Jian, LI CongCong, HUANG YaTing, XIE YuLi, CHENG LingLing, WANG JianShe. Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon[J]. Scientia Agricultura Sinica, 2021, 54(10): 2167-2178.
表1
本研究所用的PCR引物序列"
引物名称 Primer | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer (5'-3') |
---|---|---|
ID1716 | TTCCACGAACTCAGGAGCTG | AGTAGCATGAGGCTAGACTTGA |
S24 | TGAACTCGTGTCTAACGTACCA | ACTCCACTCTCGTATCCAGT |
S26 | GCAATGGAGGTGAGTGCCAA | GCATGTCTTTGCCATGTTGTGT |
S27 | ATGACCAAACAATGGTGCTGTG | GCTTGTGTGAGAGTAAATCAAGGT |
S2 | AGAGGGAAGCCATCAAGCAA | ATTGTACATACTGTCTAGGGTTTCT |
S28 | AAACCATTGACACAAGCTCCA | ACATCACATGTATCAAGTGCCT |
S29 | ATTCCATTTTCGTCAAACAACTTTC | GTCCATCATGATCTATCGCAAAA |
S30 | GGCTTTCCTTTGTCAGATTCCA | CCAAAGTGGGGTAGGAGCATT |
S33 | GGTTTATGATGAAAACGACCGA | GAGGTGACGAGGTCCAAATAA |
S34 | CACCCACTTAGGGTTGAAGAA | GTTTGGAATTGAAGTACACACCT |
S35 | GAGCATTAAGACCAAAGACACAA | TAAGTAACGAGTGAGGTTGGG |
ID3716 | GCTACAAGCCATGTTGAACTCT | TGAAGAAGCGAGGAAAGAATAGG |
YS | CTTATCCGCCTCCGACACC | AGTTAACGCACCCGAACCC |
CmSC1 | AGACCCATTTGTTTCACTTTCACC | CAGAGAAGCTTCCACTCCCA |
表2
种皮颜色的遗传分析"
亲本或组合 Parents or generation | 白色种皮株数 White seed color individuals | 黄色种皮株数 Yellow seed color individuals | 分离比 Expected ratio | χ20.05值 χ20.05 |
---|---|---|---|---|
HP22 (P1) | 5 | 0 | ||
B8 (P2) | 0 | 5 | ||
B150 (P3) | 0 | 5 | ||
F1 (P1♂×P2♀) | 0 | 10 | ||
F1 (P1♀×P2♂) | 10 | 0 | ||
F1 (P1♂×P3♀) | 0 | 10 | ||
F1 (P1♀×P3♂) | 10 | 0 | ||
F1 (P2♂×P3♀) | 0 | 10 | ||
F1 (P2♀×P3♂) | 0 | 10 | ||
F2 (P1×P2) | 10 | 0 | ||
F2 (P2×P3) | 0 | 10 | ||
F2:3 (P1×P2) | 1029 | 368 | 3:1 | 1.41 |
F2:3 (P1×P3) | 358 | 112 | 3:1 | 0.28 |
F2:3 (P2×P3) | 0 | 115 |
表3
定位区间内的注释基因"
预测基因编号 Predicted ORF code | 基因名称 Gene name | 预测基因功能 Putative function |
---|---|---|
1 | MELO3C014412 | 铝激活的类苹果酸转运蛋白12 Aluminum-activated malate transporter 12-like |
2 | MELO3C014411 | 富含半胱氨酸的类受体激酶蛋白 Cysteine-rich receptor-kinase-like protein |
3 | MELO3C014408 | 类bHLH69转录因子 Transcription factor bHLH69-like isoform X1 |
4 | MELO3C014407 | 醛糖/酮还原酶家族蛋白 Aldo/keto reductase family protein |
5 | MELO3C031122 | 碱性螺旋-环-螺旋转录因子 Basic helix-loop-helix transcription factor |
6 | MELO3C031072 | 碱性螺旋-环-螺旋转录因子 Basic helix-loop-helix transcription factor |
7 | MELO3C014405 | 未知功能蛋白 Unknown protein |
8 | MELO3C014409 | 未知功能蛋白 Unknown protein |
9 | MELO3C014403 | 蛋白前转位酶亚基SCY2 Preprotein translocase subunit SCY2 |
10 | MELO3C014402 | FANTASTIC FOUR 2蛋白 Protein FANTASTIC FOUR 2 |
11 | MELO3C014401 | 硫胺素磷酸合成酶 Thiamine phosphate synthase |
12 | MELO3C014400 | 硫胺素磷酸合成酶 Thiamine phosphate synthase |
表4
HP22和B8间变异位点检测"
基因名称 Gene | 变异位点 Variation site | ||
---|---|---|---|
DHL92 | HP22 | B8 | |
MELO3C014412 | 2750429A (I65) | 2750429C (L65) | 2750429A (I65) |
MELO3C014408 | 2765792-, 2766079A (T104) | 2765792A (移码突变 Code shift mutation), 2766079G (A104) | 2765792-, 2766079A (T104) |
MELO3C014409 | 2755903T | 2755903A (终止密码 Termination coden) | 2755903T |
MELO3C031122 | 2781790- | 2781790- | 2781790A (终止密码 Termination coden) |
表5
104份材料的CmSC1基因型分析"
编号No. | 材料名称 Accession | 种皮颜色(F2) Seed coat color (F2) | 基因型 Genotype | 编号 No. | 材料名称 Accession | 种皮颜色(F2) Seed coat color (F2) | 基因型 Genotype | |||
---|---|---|---|---|---|---|---|---|---|---|
ATG47 | ATG260 | ATG47 | ATG260 | |||||||
1 | HP22 | 白色 White | ― ― | ― ― | 53 | H30 | 黄色 Yellow | ― ― | -14 bp | |
2 | B8 | 黄色 Yellow | +A | ― ― | 54 | H32 | 黄色 Yellow | ― ― | -14 bp | |
3 | B150 | 黄色 Yellow | ― ― | -14 bp | 55 | H33 | 黄色 Yellow | ― ― | -14 bp | |
4 | B1 | 白色 White | ― ― | ― ― | 56 | H34 | 黄色 Yellow | ― ― | -14 bp | |
5 | B2 | 黄色 Yellow | +A | ― ― | 57 | H35 | 黄色 Yellow | ― ― | -14 bp | |
6 | B3 | 白色 White | ― ― | ― ― | 58 | H36 | 黄色 Yellow | ― ― | -14 bp | |
7 | B4 | 白色 White | ― ― | ― ― | 59 | H37 | 黄色 Yellow | ― ― | -14 bp | |
8 | B5 | 白色 White | ― ― | ― ― | 60 | H38 | 黄色 Yellow | ― ― | -14 bp | |
9 | B6 | 黄色 Yellow | +A | ― ― | 61 | H41 | 黄色 Yellow | ― ― | -14 bp | |
10 | B7 | 白色 White | ― ― | ― ― | 62 | H50 | 黄色 Yellow | ― ― | -14 bp | |
11 | B9 | 白色 White | ― ― | ― ― | 63 | H53 | 黄色 Yellow | ― ― | -14 bp | |
12 | B10 | 白色 White | ― ― | ― ― | 64 | H56 | 黄色 Yellow | ― ― | -14 bp | |
13 | B11 | 黄色 Yellow | +A | ― ― | 65 | H58 | 黄色 Yellow | ― ― | -14 bp | |
14 | B12 | 白色 White | ― ― | ― ― | 66 | H61 | 黄色 Yellow | ― ― | -14 bp | |
15 | B13 | 黄色 Yellow | +A | ― ― | 67 | H68 | 黄色 Yellow | ― ― | -14 bp | |
16 | B14 | 白色 White | ― ― | ― ― | 68 | H74 | 黄色 Yellow | ― ― | -14 bp | |
17 | B15 | 白色 White | ― ― | ― ― | 69 | H76 | 黄色 Yellow | ― ― | -14 bp | |
18 | B16 | 黄色 Yellow | +A | ― ― | 70 | H81 | 黄色 Yellow | ― ― | -14 bp | |
19 | B17 | 白色 White | ― ― | ― ― | 71 | H82 | 黄色 Yellow | ― ― | -14 bp | |
20 | B18 | 白色 White | ― ― | ― ― | 72 | H84 | 黄色 Yellow | ― ― | -14 bp | |
21 | B19 | 白色 White | ― ― | ― ― | 73 | H93 | 黄色 Yellow | ― ― | -14 bp | |
22 | B20 | 白色 White | ― ― | ― ― | 74 | H98 | 黄色 Yellow | ― ― | -14 bp | |
23 | B21 | 白色 White | ― ― | ― ― | 75 | H99 | 黄色 Yellow | ― ― | -14 bp | |
24 | B22 | 黄色 Yellow | +A | ― ― | 76 | H101 | 黄色 Yellow | ― ― | -14 bp | |
25 | B23 | 黄色 Yellow | +A | ― ― | 77 | H105 | 黄色 Yellow | ― ― | -14 bp | |
26 | B24 | 黄色 Yellow | ― ― | -14 bp | 78 | H107 | 黄色 Yellow | ― ― | -14 bp | |
27 | B27 | 白色 White | ― ― | ― ― | 79 | H109 | 黄色 Yellow | ― ― | -14 bp | |
28 | B29 | 黄色 Yellow | ― ― | -14 bp | 80 | H118 | 黄色 Yellow | ― ― | -14 bp | |
29 | B31 | 白色 White | ― ― | ― ― | 81 | H161 | 黄色 Yellow | ― ― | -14 bp | |
30 | B32 | 白色 White | ― ― | ― ― | 82 | HP1 | 白色 White | ― ― | ― ― | |
31 | B33 | 白色 White | ― ― | ― ― | 83 | HP2 | 白色 White | ― ― | ― ― | |
32 | B35 | 黄色 Yellow | +A | ― ― | 84 | HP3 | 白色 White | ― ― | ― ― | |
33 | B36 | 白色 White | ― ― | ― ― | 85 | HP4 | 白色 White | ― ― | ― ― | |
34 | B37 | 白色 White | ― ― | ― ― | 86 | HP5 | 黄色 Yellow | ― ― | -14 bp | |
35 | B38 | 白色 White | ― ― | ― ― | 87 | HP6 | 黄色 Yellow | ― ― | -14 bp | |
36 | B39 | 白色 White | ― ― | ― ― | 88 | HP7 | 黄色 Yellow | ― ― | -14 bp | |
37 | B53 | 黄色 Yellow | +A | ― ― | 89 | HP8 | 黄色 Yellow | ― ― | -14 bp | |
38 | B224 | 黄色 Yellow | ― ― | -14 bp | 90 | HP9 | 黄色 Yellow | ― ― | -14 bp | |
39 | B98 | 黄色 Yellow | +A | ― ― | 91 | HP10 | 黄色 Yellow | ― ― | -14 bp | |
40 | B133 | 黄色 Yellow | +A | ― ― | 92 | HP11 | 黄色 Yellow | ― ― | -14 bp | |
41 | B134 | 黄色 Yellow | +A | ― ― | 93 | HP12 | 黄色 Yellow | ― ― | -14 bp | |
42 | B196 | 黄色 Yellow | +A | ― ― | 94 | H71 | 黄色 Yellow | ― ― | -14 bp | |
43 | B198 | 黄色 Yellow | +A | ― ― | 95 | H72 | 黄色 Yellow | ― ― | -14 bp | |
44 | B220 | 黄色 Yellow | +A | ― ― | 96 | 1520A | 白色 White | ― ― | ― ― | |
45 | B241 | 黄色 Yellow | +A | ― ― | 97 | Z8 | 白色 White | ― ― | ― ― | |
46 | H7 | 黄色 Yellow | +A | ― ― | 98 | BZ1119 | 褐色 Brown | +A | ― ― | |
47 | H16 | 黄色 Yellow | +A | ― ― | 99 | BZ2659 | 褐色 Brown | +A | ― ― | |
48 | H17 | 黄色 Yellow | ― ― | -14 bp | 100 | 3A832 | 白色 White | ― ― | ― ― | |
49 | H19 | 黄色 Yellow | ― ― | -14 bp | 101 | 雪丽脆 Xuelicui | 白色 White | ― ― | 杂合 Hybrid | |
50 | H23 | 黄色 Yellow | ― ― | -14 bp | 102 | 瑞金 Ruijin | 白色 White | ― ― | 杂合 Hybrid | |
51 | H24 | 黄色 Yellow | ― ― | -14 bp | 103 | 冀州鲜 Jizhouxian | 白色 White | ― ― | 杂合 Hybrid | |
52 | H29 | 黄色 Yellow | ― ― | -14 bp | 104 | 火焰二号F1 F1 of Huoyan 2 | 白色 White | ― ― | 杂合 Hybrid |
[1] | 刘相玉, 张裕舒, 刘柳, 刘识, 高鹏, 王迪, 王学征. 基于CAPS标记的甜瓜单果重相关性状QTL分析. 中国农业科学, 2019,52(9):1601-1613. |
LIU X Y, ZHANG Y S, LIU L, LIU S, GAO P, WANG D, WANG X Z. The QTL analysis of single fruit weight associated traits in melon based on CAPS markers. Scientia Agricultura Sinica, 2019,52(9):1601-1613. (in Chinese) | |
[2] | 戴祖云, 赵辉, 夏承东, 杨培柱, 刘永忠. 早熟耐贮浓黄皮甜瓜品种黄子金玉的选育. 中国瓜菜, 2006(1):23-25. |
DAI Z Y, ZHAO H, XIA C D, YANG P Z, LIU Y Z. A new melon variety-Golden Jade with early-maturity and dark-yellow rind. Chinese Cucurbits and Vegetables, 2006(1):23-25. (in Chinese) | |
[3] |
TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 2008,54(4):733-749.
doi: 10.1111/j.1365-313X.2008.03447.x |
[4] |
WINKEL-SHIRLEY B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001,126(2):485-493.
doi: 10.1104/pp.126.2.485 |
[5] |
GONZALEZ A, ZHAO M, LEAVITT J M, LLOYD A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal, 2008,53(5):814-827.
doi: 10.1111/tpj.2008.53.issue-5 |
[6] | ZHANG B P, SCHRADER A. TRANSPARENT TESTA GLABRA 1-dependent regulation of flavonoid biosynthesis. Plants (Basel), 2017,6(4):65. |
[7] |
BAUDRY A, HEIM M A, DUBREUCQ B, CABOCHE M, WEISSHAAR B, LEPINIEC L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal, 2004,39(3):366-380.
doi: 10.1111/tpj.2004.39.issue-3 |
[8] |
NESI N, DEBEAUJON I, JOND C, PELLETIER G, CABOCHE M, LEPINIEC L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell, 2000,12(10):1863-1878.
doi: 10.1105/tpc.12.10.1863 |
[9] |
HEIM M A, JAKOBY M, WERBER M, MARTIN C, WEISSHAAR B, BAILEY P C. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution, 2003,20(5):735-747.
doi: 10.1093/molbev/msg088 |
[10] |
TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/helix loop-helix transcription factor family. The Plant Cell, 2003,15(8):1749-1770.
doi: 10.1105/tpc.013839 |
[11] |
GOFF S A, CONE K C, CHANDLER V L. Functional analysis of the transcriptional activator encoded by the maize B gene: Evidence for a direct functional interaction between two classes of regulatory proteins. Genes Development, 1992,6(5):864-875.
doi: 10.1101/gad.6.5.864 |
[12] |
PATTANAIK S, KONG Q, ZAITLIN D, WERKMAN J R, XIE C H, PATRA B, YUAN L. Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta, 2010,231(5):1061-1076.
doi: 10.1007/s00425-010-1108-y |
[13] |
PAYNE C T, ZHANG F, LLOYD A M. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics, 2000,156(3):1349-1362.
doi: 10.1093/genetics/156.3.1349 |
[14] |
BERNHARDT C, LEE MM, GONZALEZ A, ZHANG F, LLOYD A, SCHIEFELBEIN J. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development, 2003,130(26):6431-6439.
doi: 10.1242/dev.00880 |
[15] |
ZHANG F, GONZALEZ A, ZHAO M Z, PAYNE C T, LLOYD A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development, 2003,130(20):4859-4869.
doi: 10.1242/dev.00681 |
[16] |
URAO T, YAMAGUCHI-SHINOZAKI K, MITSUKAWA N, SHIBATA D, SHINOZAKI K. Molecular cloning and characterization of a gene that encodes a MYC-related protein in Arabidopsis. Plant Molecular Biology, 1996,32(3):571-576.
doi: 10.1007/BF00019112 |
[17] |
LI X, CHEN L, HONG M Y, ZHANG Y, ZU F, WEN J, YI B, MA C Z, SHEN J X, TU J X, FU T D. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS ONE, 2012,7(9):e44145.
doi: 10.1371/journal.pone.0044145 |
[18] |
SPELT C, QUATTROCCHIO F, MOL J N M, KOES R. Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. The Plant Cell, 2000,12(9):1619-1631.
doi: 10.1105/tpc.12.9.1619 |
[19] |
SPELT C, QUATTROCCHIO F, MOL J, KOES R. ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coatdevelopment by genetically distinct mechanisms. The Plant Cell, 2002,14(9):2121-2135.
doi: 10.1105/tpc.003772 |
[20] | BURR F A, BURR B, SCHEFFLER B E, BLEWITT M, WIENAND U, MATZ E C. The maize repressor-like gene intensifier1 shares homology with the r1/b1 multigene family of transcription factors and exhibits missplicing. The Plant Cell, 1996,8(8):1249-1259. |
[21] |
SWEENEY M T, THOMSON M J, PFEIL B E, MCCOUCH S. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. The Plant Cell, 2006,18(2):283-294.
doi: 10.1105/tpc.105.038430 |
[22] | 谭澍, 程蛟文, 崔峻杰, 李卫鹏, 胡开林. 苦瓜单瓜种子数与种皮颜色的遗传分析. 中国蔬菜, 2013(18):48-52. |
TAN S, CHENG J W, CUI J J, LI W P, HU K L. Genetic analysis on single fruit seed numbers and seed coat color of bitter melon. China Vegetables, 2013 (18):48-52. (in Chinese) | |
[23] | 周庆友. 丝瓜主要农艺性状的遗传分析及种皮颜色基因定位[D]. 南昌: 江西农业大学, 2013. |
ZHOU Q Y. Genetic analysis of main agronomic traits and gene localization of seed coat color in Luffa spp[D]. Nanchang: Jiangxi Agricultural University, 2013. (in Chinese) | |
[24] |
LI B B, LU X Q, GEBREMESKEL H, ZHAO S J, HE N, YUAN P L, GONG C S, MOHAMMEN U, LIU W G. Genetic mapping and discovery of the candidate gene for black seed coat color in watermelon (Citrullus lanatus). Frontiers in Plant Science, 2020,10:1689.
doi: 10.3389/fpls.2019.01689 |
[25] | HAGIWARA T, KAMIMURA K. Cross-Breeding Experiments in Cucumis melo. Tokyo: Tokyo Horticultural School Publication, 1936. |
[26] | PÉRIN C, DOGIMONT C, GIOVINAZZO N, BESOMBES D, GUITTON L, HAGEN L, PITRAT M. Genetic control and linkages of some fruit characters in melon. Cucurbit Genetics Cooperative Report, 1999,22:16-18. |
[27] | 张可鑫, 戴冬洋, 王浩男, 蔚明月, 盛云燕. 甜瓜种子相关性状遗传规律与QTL分析. 浙江农业学报, 2018,30(9):1496-1503. |
ZHANG K X, DAI D Y, WANG H N, YU M Y, SHENG Y Y. Genetic and QTL analysis of seed traits in melon (Cucumis melon L.). Acta Agriculturae Zhejiangensis, 2018,30(9):1496-1503. (in Chinese) | |
[28] |
TZURI G, ZHOU X, CHAYUT N, YUAN H, PORTNOY V, MEIR A, SA'AR U, BAUMKOLER F, MAZOUREK M, LEWINSOHN E, FEI Z, SCHAFFER AA, LI L, BURGER J, KATZIR N, TADMOR Y. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). The Plant Journal, 2015,82(2):267-279.
doi: 10.1111/tpj.2015.82.issue-2 |
[29] | 马建, 李丛丛, 王建设. 甜瓜短蔓基因Cmdm1的精细定位及候选基因分析. 中国农业科学, 2020,53(4):802-810. |
MA J, LI C C, WANG J S. Fine mapping and candidate gene analysis of a short internodes gene Cmdm1 in melon (Cucumis melo L.). Scientia Agricultura Sinica, 2020,53(4):802-810. (in Chinese) | |
[30] |
ZHOU Y, MA Y S, ZENG J G, DUAN L X, XUE X F, WANG H S, LIN T, LIU Z Q, ZENG K W, ZHONG Y, ZHANG S, HU Q, LIU M, ZHANG H M, REED J, MOSES T, LIU X Y, HUANG P, QING Z X, LIU X B, TU P F, KUANG H H, ZHANG Z H, OSBOURN A, RO D-K, SHANG Y, HUANG S W. Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nature Plants, 2016,2:16183.
doi: 10.1038/nplants.2016.183 |
[31] |
BROTMAN Y, NORMANTOVICH M, GOLDENBERG Z, ZVIRIN Z, KOVALSKI I, STOVBUN N, DONIGER T, BOLGER A M, TROADEC C, BENDAHMANE A, COHEN R, KATZIR N, PITRAT M, DOGIMONT C, PERL-TREVES R. Dual Resistance of melon to Fusarium oxysporum races 0 and 2 and to Papaya ring-spot virus is controlled by a pair of head-to-head-oriented NB-LRR genes of unusual architecture. Molecular Plant, 2013,6(1):235-238.
doi: 10.1093/mp/sss121 |
[32] |
MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980,8(19):4321-4326.
doi: 10.1093/nar/8.19.4321 |
[33] |
BAI Y H, PATTANAIK S, PATRA B, WERKMAN J R, XIE C H, YUAN L. Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b, of tobacco have originated from two ancestors and are functionally active. Planta, 2011,234(2):363-375.
doi: 10.1007/s00425-011-1407-y |
[34] | YOSHIDA K, KUME N, NAKAYA Y, YAMAGAMI A, NAKANO T, SAKUTA M. Comparative analysis of the triplicate proathocyanidin regulators in Lotus japonicus. Plant Cell Physiology, 2010,51(6):912-922. |
[35] |
RAHIM M A, AFRIN K S, JUNG H J, KIM H T, PARK J I, HUR Y K, NOU I S. Molecular analysis of anthocyanin biosynthesis-related genes reveal BoTT8 associated with purple hypocotyl of broccoli (Brassica oleracea var. italica L.). Genome, 2019,62(4):253-266.
doi: 10.1139/gen-2018-0173 |
[36] |
DEBEAUJON I, LÉON-KLOOSTERZIEL K M, KOORNNEEF M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology, 2000,122(2):403-414.
doi: 10.1104/pp.122.2.403 |
[37] |
SWEENEY M T, THOMSON M J, PFEIL B E, MCCOUCH S R. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. The Plant Cell, 2006,18(2):283-294.
doi: 10.1105/tpc.105.038430 |
[38] | SWEENEY M T, THOMSON M J, CHO Y G, PARK Y J, WILLIAMSON S H, BUSTAMANTE C D, McCouch S R. Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genetics, 2007,3(8):1418-1424. |
[39] |
GU X Y, FOLEY M E, HORVATH D P, ANDERSON J V, FENG J H, ZHANG L H, CMOWRY C R, YE H, SUTTLE J C, KADOWAKI K, CHEN Z X. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics, 2011,189(4):1515-1524.
doi: 10.1534/genetics.111.131169 |
[40] | MCCREIGHT J D, BOHN G W. Descriptions, genetics and independent assortment of red stem and pale in muskmelon (Cucumis melo L.). Journal of the American Society for Horticultural Science, 1979,104(6):721-723. |
[1] | 王岭,才羿,王桂超,王迪,盛云燕. 甜瓜SLAF图谱构建及果实相关性状QTL分析[J]. 中国农业科学, 2021, 54(19): 4196-4206. |
[2] | 刁卫楠,袁平丽,龚成胜,赵胜杰,朱红菊,路绪强,何楠,杨东东,刘文革. 西瓜果肉柠檬黄色的遗传分析和基因定位[J]. 中国农业科学, 2021, 54(18): 3945-3958. |
[3] | 许昕阳,沈佳,张跃建,李国景,牛晓伟,寿伟松. 甜瓜幼果果皮颜色基因GR的精细定位[J]. 中国农业科学, 2021, 54(15): 3308-3319. |
[4] | 张硕,智慧,唐婵娟,罗明昭,汤沙,贾冠清,贾彦超,刁现民. 谷子条纹叶突变体A36-S的细胞学特性分析及基因定位[J]. 中国农业科学, 2021, 54(14): 2952-2964. |
[5] | 郝小燕,牟春堂,乔栋,张暄梓,杨文军,赵俊星,张春香,张建新. 葡萄籽原花青素对羔羊瘤胃发酵、血清炎症及抗氧化指标的影响[J]. 中国农业科学, 2021, 54(10): 2239-2248. |
[6] | 马建,李丛丛,王建设. 甜瓜短蔓基因Cmdm1的精细定位及候选基因分析[J]. 中国农业科学, 2020, 53(4): 802-810. |
[7] | 梁慧珍,许兰杰,董薇,余永亮,杨红旗,谭政委,李磊,刘新梅. 大豆γ-生育酚的混合遗传分析与QTL定位[J]. 中国农业科学, 2020, 53(11): 2149-2160. |
[8] | 龚成胜, 赵胜杰, 路绪强, 何楠, 朱红菊, 豆峻岭, 袁平丽, 李兵兵, 刘文革. 西瓜果实表皮蜡粉的化学成分与基因定位[J]. 中国农业科学, 2019, 52(9): 1587-1600. |
[9] | 刘相玉, 张裕舒, 刘柳, 刘识, 高鹏, 王迪, 王学征. 基于CAPS标记的甜瓜单果重相关性状QTL分析[J]. 中国农业科学, 2019, 52(9): 1601-1613. |
[10] | 薛亮,马忠明,杜少平,冯守疆,冉生斌. 氮素用量对膜下滴灌甜瓜产量以及氮素平衡、硝态氮累积的影响[J]. 中国农业科学, 2019, 52(4): 690-700. |
[11] | 郑晓渊, 王调兰, 张静荣, 姜红, 王斌, 毕阳. 二氧化氯处理促进厚皮甜瓜果实的采后愈伤[J]. 中国农业科学, 2019, 52(3): 512-520. |
[12] | 王佳豪,段雅倩,乜兰春,宋立彦,赵文圣,方思雨,赵佳腾. ‘羊角脆’类甜瓜果实品质因子分析及综合评价[J]. 中国农业科学, 2019, 52(24): 4582-4591. |
[13] | 白团辉,李莉,郑先波,王苗苗,宋尚伟,焦健,宋春晖. 柱状苹果Co基因的筛选与候选基因分析[J]. 中国农业科学, 2019, 52(23): 4350-4363. |
[14] | 白如霞,曾汇文,范倩,殷洁,隋宗明,袁玲. 撕裂蜡孔菌对黄瓜蔓枯病的防治作用及促生增产效果[J]. 中国农业科学, 2019, 52(15): 2604-2615. |
[15] | 康利允,常高正,高宁宁,李晓慧,李海伦,梁慎,徐小利,赵卫星. 不同氮、钾肥施用量对甜瓜养分吸收、分配及产量的影响[J]. 中国农业科学, 2018, 51(9): 1758-1770. |
|