中国农业科学 ›› 2021, Vol. 54 ›› Issue (8): 1728-1738.doi: 10.3864/j.issn.0578-1752.2021.08.012
收稿日期:
2020-07-04
接受日期:
2020-11-13
出版日期:
2021-04-16
发布日期:
2021-04-25
通讯作者:
师恺
作者简介:
李建鑫,E-mail: 基金资助:
LI JianXin(),WANG WenPing,HU ZhangJian,SHI Kai()
Received:
2020-07-04
Accepted:
2020-11-13
Online:
2021-04-16
Published:
2021-04-25
Contact:
Kai SHI
摘要:
【目的】在全球气候变化大背景下,酸雨沉降日益加剧,严重影响蔬菜等农作物的产量、品质和抗性。油菜素内酯(brassinosteroid,BR)是一类植物体中广泛存在的植物激素,具有广谱调控植物抗性的作用。研究外源油菜素内酯对模拟酸雨环境下蔬菜作物光合作用和病害发生的影响,明确其对酸雨条件下蔬菜危害的缓解效应,对蔬菜作物安全生产提供指导。【方法】本研究以番茄(Solanum lycopersium L.)‘合作903’为材料,在模拟酸雨(模拟酸雨1(simulated acid rain 1,SiAR1):NH4NO3(1.3 g·L-1)、MgSO4·7H2O(3.1 g·L-1)、Na2SO4(2.5 g·L-1)、KHCO3(1.3 g·L-1)、CaCl2·2H2O(3.1 g·L-1),用1 N H2SO4调节pH至3.0;模拟酸雨2(SiAR2):杭州地区春季收集的雨水,pH调至3.0)和对照(喷施dH2O)条件下研究酸雨对番茄叶片光合作用和Pseudomonas syringae pv. tomato DC3000(Pst DC3000)引发的细菌性叶斑病发生的影响,其次在模拟酸雨和对照条件下对番茄叶片外源施用BR,研究外源施用BR对番茄叶片的光合特性和细菌性叶斑病发生的缓解作用,为了研究BR缓解作用的内在机制,测定番茄叶片光合作用关键基因FBPase、SBPase、rbcS和抗病基因PR1、NPR1的表达以及抗氧化酶的活性。【结果】模拟酸雨导致番茄叶片净光合作用速率(Pn)、光系统II实际光化学效率(ΦPSII)及光化学淬灭系数(qP)显著下降;模拟酸雨削弱了番茄对Pst DC3000的抗性,导致细菌性叶斑病发病率上升和菌落数显著增加。外源施用BR提高酸雨和对照条件下番茄叶片的光合作用,并有效增强了酸雨条件下番茄对Pst DC3000的抗性,使酸雨条件下叶片菌落数下降,光系统II实际光化学效率提高。探究BR缓解效应的内在机制发现,外源施用BR显著提高了番茄叶片光合作用关键基因FBPase、SBPase、rbcS和抗病基因PR1、NPR1等的表达,降低了膜脂质过氧化物丙二醛(MDA)的含量,并增加了愈创木酚过氧化物酶(G-POD)和过氧化氢酶(CAT)等抗氧化酶的活性,从而缓解模拟酸雨对番茄光合和抗病性的抑制作用。【结论】外源施用BR能够显著提高番茄内源光合相关基因和抗病基因的表达及抗氧化酶的活性,有效促进酸雨环境中番茄等园艺作物的生长和增强抗病性。
李建鑫,王文平,胡璋健,师恺. 模拟酸雨对番茄光合作用和病害发生的影响及油菜素内酯对其缓解效应[J]. 中国农业科学, 2021, 54(8): 1728-1738.
LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid[J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
表1
基因qRT-PCR特异性引物"
基因 Gene | 上游引物Forward primer (5′-3′) | 下游引物Reverse primer (5′-3′) |
---|---|---|
Actin | CATGTTCCCTGGTATTGCTG | GCCCTTTGAAATCCACATCT |
rbcS | AGCCTGGGTTCGTATTATCG | CCTTCTGGCTTGTAGGCAAT |
FBPase | CAAGAGCCCTTCAGAACACA | GCCTCCTCAGACTCACCTTC |
SBPase | GGAAACAATCCGTCCTTGAT | GCCTTAAGCCTTGATGAACC |
PR1 | TCCGAGAGGCCAAGCTATAA | GACTGAGTTGCGCCAGACTA |
NPR1 | CATCCTTGCTGTTGATGGAC | TACCATCAAACACCTTCCGA |
[1] |
EVANS L S. Botanical aspects of acidic precipitation. The Botanical Review, 1984,50(4):449-490.
doi: 10.1007/BF02862631 |
[2] | 刘萍, 夏菲, 潘家永, 陈益平, 彭花明, 陈少华. 中国酸雨概况及防治对策探讨. 环境科学与管理, 2011,36(12):30-35, 84. |
LIU P, XIA F, PAN J Y, CHEN Y P, PENG H M, CHEN S H. Discuss on present situation and countermeasures for acid rain prevention and control in China. Environmental Science and Management, 2011,36(12):30-35, 84. (in Chinese) | |
[3] | 黎华寿, 聂呈荣, 胡永刚. 模拟酸雨对杂交稻常规稻野生稻影响的研究. 农业环境科学学报, 2004,23(2):284-287. |
LI H S, NIE C R, HU Y G. Effects of simulated acid rain on hybrid, common and wild rice varieties. Journal of Agro-Environment Science, 2004,23(2):284-287. (in Chinese) | |
[4] |
CAO Y Y, ZHAO H. Protective roles of brassinolide on rice seedlings under high temperature stress. Rice Science, 2008,15(1):63-68.
doi: 10.1016/S1672-6308(08)60021-9 |
[5] |
SYMONS G M, DAVIES C, SHAVRUKOV Y, DRY I B, REID J B, THOMAS M R. Grapes on steroids brassinosteroids are involved in grape berry ripening. Plant Physiology, 2006,140(1):150-158.
doi: 10.1104/pp.105.070706 pmid: 16361521 |
[6] | 2018年《中国生态环境状况公报》(摘录一). 环境保护, 2019,47(11):47-53. |
China ecological environment status bulletin in 2018 (Excerpt 1). Environmental Protection, 2019,47(11):47-53. (in Chinese) | |
[7] |
ZHANG J, JIANG X D, LI T L, CAO X J. Photosynthesis and ultrastructure of photosynthetic apparatus in tomato leaves under elevated temperature. Photosynthetica, 2014,52(3):430-436.
doi: 10.1007/s11099-014-0051-8 |
[8] |
WANG L H, WANG W, ZHOU Q, HUANG X H. Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice. Chemosphere, 2014,112:355-361.
doi: 10.1016/j.chemosphere.2014.04.069 |
[9] |
DEBNATH B, HUSSAIN M, IRSHAD M, MITRA S, LI M, LIU S, QIU D L. Exogenous melatonin mitigates acid rain stress to tomato plants through modulation of leaf ultrastructure, photosynthesis and antioxidant potential. Molecules, 2018,23(2):388-403.
doi: 10.3390/molecules23020388 |
[10] |
GABARA B, SKŁODOWSKA M, WYRWICKA A, GLIŃSKA S, GAPIŃSKA M. Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. leaves sprayed with acid rain. Plant Science, 2003,164(4):507-516.
doi: 10.1016/S0168-9452(02)00447-8 |
[11] |
麦博儒, 郑有飞, 吴荣军, 梁骏, 刘霞. 模拟硫酸型、硝酸型及其混合型酸雨对油菜生理特性、生长和产量的影响. 植物生态学报, 2010,34(4):427-437.
doi: 10.3773/j.issn.1005-264x.2010.04.008 |
MAI B R, ZHENG Y F, WU R J, LIANG J, LIU X. Effects of simulated sulfur-rich, nitric-rich and mixed acid rain on the physiology, growth and yield of rape (Brassica napus). Chinese Journal of Plant Ecology, 2010,34(4):427-437. (in Chinese)
doi: 10.3773/j.issn.1005-264x.2010.04.008 |
|
[12] |
DUTTA B, LANGSTON D B, LUO X, CARLSON S, KICHLER J, GITAITIS R. A risk assessment model for bacterial leaf spot of pepper (Capsicum annuum), caused by Xanthomonas euvesicatoria, based on concentrations of macronutrients, micronutrients, and micronutrient ratios. Phytopathology, 2017,107(11):1331-1338.
doi: 10.1094/PHYTO-05-17-0187-R pmid: 28686086 |
[13] | 王树和, 孙佩璐, 周文楠, 刘婷, 马占鸿. 模拟酸雨对小麦条锈病流行学组分的影响. 植物保护学报, 2018,45(1):173-180. |
WANG S H, SUN P L, ZHOU W N, LIU T, MA Z H. Effect of simulated acid rain on disease progress of wheat yellow rust. Journal of Plant Protection, 2018,45(1):173-180. (in Chinese) | |
[14] |
TRUJILLO E E, KADOOKA C Y, TANIMOTO V, BERGFELD S, SHISHIDO G, KAWAKAMI G. Effective biomass reduction of the invasive weed species banana poka by septoria leaf spot. Plant Disease, 2001,85(4):357-361.
doi: 10.1094/PDIS.2001.85.4.357 pmid: 30831966 |
[15] |
VERMA V, RAVINDRAN P, KUMAR P P. Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 2016,16(1):86.
doi: 10.1186/s12870-016-0771-y |
[16] |
HAN S Y, LIU H, YAN M, QI F Y, WANG Y Q, SUN Z Q, HUANG B Y, DONG W Z, TANG F S, ZHANG X Y, HE G H. Differential gene expression in leaf tissues between mutant and wild-type genotypes response to late leaf spot in peanut (Arachis hypogaea L.). PLoS ONE, 2017,12(8):e0183428.
doi: 10.1371/journal.pone.0184210 pmid: 28859154 |
[17] |
AHAMMED G J, CHOUDHARY S P, CHEN S, XIA X, SHI K, ZHOU Y, YU J. Role of brassinosteroids in alleviation of phenanthrene- cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. Journal of Experimental Botany, 2013,64(1):199-213.
doi: 10.1093/jxb/ers323 pmid: 23201830 |
[18] |
YU M H, ZHAO Z Z, HE J X. Brassinosteroid signaling in plant-microbe interactions. International Journal of Molecular Sciences, 2018,19(12):4091.
doi: 10.3390/ijms19124091 |
[19] |
VELIKOVA V, YORDANOV I, KURTEVA M, TSONEV T. Effects of simulated acid rain on the photosynthetic characteristics of Phaseolus vulgaris L. Photosynthetica, 1998,34(4):523-535.
doi: 10.1023/A:1006857311410 |
[20] |
SUN Y J, GENG Q W, DU Y P, YANG X H, ZHAI H. Induction of cyclic electron flow around photosystem I during heat stress in grape leaves. Plant Science, 2017,256:65-71.
doi: 10.1016/j.plantsci.2016.12.004 pmid: 28167040 |
[21] |
THILMONY R, UNDERWOOD W, HE S Y. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. The Plant Journal, 2006,46(1):34-53.
doi: 10.1111/j.1365-313X.2006.02725.x pmid: 16553894 |
[22] |
KOCH E, SLUSARENKO A. Arabidopsis is susceptible to infection by a downy mildew fungus. The Plant Cell, 1990,2(5):437-445.
doi: 10.1105/tpc.2.5.437 pmid: 2152169 |
[23] |
LEGRAND C, BOUR J M, JACOB C, CAPIAUMONT J, MARTIAL A, MARC A, WUDTKE M, KRETZMER G, DEMANGEL C, DUVAL D, HACHE J. Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker. Journal of Biotechnology, 1992,25(3):231-243.
doi: 10.1016/0168-1656(92)90158-6 pmid: 1368802 |
[24] | 陈建勋, 王晓峰. 植物生理学实验指导(第二版). 广州: 华南理工大学出版社, 2006: 64-66. |
CHEN J X, WANG X F. Guidance of Plant Physiological Experiment (2nd edition). Guangzhou: South China University of Technology Publishers, 2006: 64-66. (in Chinese) | |
[25] |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- dye binding. Analytical Biochemistry, 1976,72:248-254.
doi: 10.1006/abio.1976.9999 pmid: 942051 |
[26] |
HODGES D M, DELONG J M, FORNEY C F, PRANGE R K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999,207(4):604-611.
doi: 10.1007/s004250050524 |
[27] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[28] |
WYRWICKA A, SKŁODOWSKA M. Influence of repeated acid rain treatment on antioxidative enzyme activities and on lipid peroxidation in cucumber leaves. Environmental and Experimental Botany, 2006,56(2):198-204.
doi: 10.1016/j.envexpbot.2005.02.003 |
[29] | 姚桃峰, 王润元, 王鹤龄, 赵鸿. 拔节期模拟酸雨对春小麦叶片光合特性的影响. 安徽农业科学, 2010,38(15):8069-8073. |
YAO T F, WANG R Y, WANG H L, ZHAO H. Stress effects of simulated acid rain on photosynthetic characteristics of field-grown spring wheat at the jointing stage. Journal of Anhui Agricultural Sciences, 2010,38(15):8069-8073. (in Chinese) | |
[30] |
SUN Z G, WANG L H, CHEN M M, WANG L, LIANG C J, ZHOU Q, HUANG X H. Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings. Ecotoxicology and Environmental Safety, 2012,79:62-68.
doi: 10.1016/j.ecoenv.2011.12.004 |
[31] |
YU J Q, YE S F, HUANG L F. Effects of simulated acid precipitation on photosynthesis, chlorophyll fluorescence, and antioxidative enzymes in Cucumis sativus L. Photosynthetica, 2002,40(3):331-335.
doi: 10.1023/A:1022658504882 |
[32] |
GABARA B, SKŁODOWSKA M, WYRWICKA A, GLIŃSKA S, GAPIŃSKA M. Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. leaves sprayed with acid rain. Plant Science, 2003,164(4):507-516.
doi: 10.1016/S0168-9452(02)00447-8 |
[33] |
JOZEF K, BOŘIVOJ K, MARTIN B, FRANTIŠEK S, JOSEF H. Physiological responses of root-less epiphytic plants to acid rain. Ecotoxicology, 2011,20(2):348-357.
doi: 10.1007/s10646-010-0585-x |
[34] |
CHANDRAMOHAN P, SHAW M W. Sulphate and sulphurous acid alter the relative susceptibility of wheat to Phaeosphaeria nodorum and Mycosphaerella graminicola. Plant Pathology, 2013,62(6):1342-1349.
doi: 10.1111/ppa.12052 |
[35] | 袁志文. 酸雨与马尾松病害的发生调查初报. 生态学杂志, 1988,7(5):50-52. |
YUAN Z W. Acid rain and the occurrence of diseases in Pinus massoniana. Chinese Journal of Ecology, 1988,7(5):50-52. (in Chinese) | |
[36] |
YANG A J, ANJUM S A, WANG L, SONG J X, ZONG X F, LV J, ZOHAIB A, ALI I, YAN R, ZHANG Y, DONG Y F, WANG S G. Effect of foliar application of brassinolide on photosynthesis and chlorophyll fluorescence traits of Leymus chinensis under varying levels of shade. Photosynthetica, 2018,56(3):873-883.
doi: 10.1007/s11099-017-0742-z |
[37] |
JIN S H, LI X Q, WANG G G, ZHU X T. Brassinosteroids alleviate high-temperature injury in Ficus concinna seedlings via maintaining higher antioxidant defence and glyoxalase systems. AoB Plants, 2015, 21(7): plv009.
doi: 10.1093/aobpla/plaa065 pmid: 33442464 |
[38] | 陆晓民, 陈勇, 贡伟, 陈运梅. 油菜素内酯对毛豆幼苗生长及其抗渍性的影响. 生物学杂志, 2006,23(3):37-38. |
LU X M, CHEN Y, GONG W, CHEN Y M. Effect of brassinolide on the seedling growth and water logging resistance of soybean. Journal of Biology, 2006,23(3):37-38. (in Chinese) | |
[39] |
KUREPIN L V, JOO S H, KIM S K, PHARIS R P, BACK T G. Interaction of brassinosteroids with light quality and plant hormones in regulating shoot growth of young sunflower and Arabidopsis seedlings. Journal of Plant Growth Regulation, 2012,31(2):156-164.
doi: 10.1007/s00344-011-9227-7 |
[40] |
YOSHIDA K, HISABORI T. Determining the rate-limiting step for light-responsive redox regulation in Chloroplasts. Antioxidants, 2018,7(11):153-160.
doi: 10.3390/antiox7110153 |
[41] |
LUO X M, LIN W H, ZHU S W, ZHU J Y, SUN Y, FAN X Y, CHENG M L, HAO Y Q, OH E, TIAN M M, LIU L J, ZHANG M, XIE Q, CHONG K, WANG Z Y. Integration of light and brassinosteroid- signaling pathways by a GATA transcription factor in Arabidopsis. Developmental Cell, 2010,19(6):872-883.
doi: 10.1016/j.devcel.2010.10.023 |
[42] |
WHITNEY S M, HOUTZ R L, ALONSO H. Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiology, 2011,155(1):27-35.
doi: 10.1104/pp.110.164814 pmid: 20974895 |
[43] |
NAKASHITA H, YASUDA M, NITTA T, ASAMI T, FUJIOKA S, ARAI Y, SEKIMATA K, TAKATSUTO S, YAMAGUCHI I, YOSHIDA S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal, 2003,33(5):887-898.
doi: 10.1046/j.1365-313x.2003.01675.x pmid: 12609030 |
[44] |
XIONG J, HE R, YANG F, ZOU L, YI K, LIN H, ZHANG D. Brassinosteroids are involved in ethylene-induced Pst DC3000 resistance in Nicotiana benthamiana. Plant Biology, 2020,22(2):309-316.
doi: 10.1111/plb.13074 pmid: 31758615 |
[45] | 刘庆. 24-表油菜素内酯诱导葡萄抵抗霜霉病和灰霉病的研究[D]. 杨凌: 西北农林科技大学, 2016. |
LIU Q. Effct of 24-epibrassinolide induced resistance of grapevine against downy mildew and grape against grey mould[D]. Yangling: Northwest A&F University, 2016. (in Chinese) | |
[46] |
YAN H J, ZHAO Y F, SHI H, LI J, WANG Y C, TANG D Z. Brassinosteroid-signaling kinase1 phosphorylates MAPKKK5 to regulate immunity in Arabidopsis. Plant Physiology, 2018,176(4):2991-3002.
doi: 10.1104/pp.17.01757 pmid: 29440595 |
[1] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[2] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[3] | 邵淑君,胡璋健,师恺. 亚油酸乙醇胺诱导番茄对灰葡萄孢抗性的作用及机制[J]. 中国农业科学, 2022, 55(9): 1781-1789. |
[4] | 王梦蕊, 刘淑梅, 侯丽霞, 王施慧, 吕宏君, 苏晓梅. 番茄颈腐根腐病抗性鉴定技术的建立及抗性种质资源筛选[J]. 中国农业科学, 2022, 55(4): 707-718. |
[5] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[6] | 胡雪华,刘宁宁,陶慧敏,彭可佳,夏晓剑,胡文海. 低温胁迫对番茄幼苗不同叶龄叶片叶绿素荧光成像特性的影响[J]. 中国农业科学, 2022, 55(24): 4969-4980. |
[7] | 刘浩,庞婕,李欢欢,强小嫚,张莹莹,宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响[J]. 中国农业科学, 2022, 55(22): 4433-4444. |
[8] | 万华琴,辜旭,何红梅,汤逸帆,申建华,韩建刚,朱咏莉. 沼液中HCO3-对水稻生长的类CO2施肥效应[J]. 中国农业科学, 2022, 55(22): 4445-4457. |
[9] | 崔青青, 孟宪敏, 段韫丹, 庄团结, 董春娟, 高丽红, 尚庆茂. 断根与打顶对番茄嫁接愈合的抑制作用[J]. 中国农业科学, 2022, 55(2): 365-377. |
[10] | 陈凤琼, 陈秋森, 林佳昕, 王雅亭, 刘汉林, 梁冰若诗, 邓艺茹, 任春元, 张玉先, 杨凤军, 于高波, 魏金鹏, 王孟雪. 番茄DIR基因家族鉴定及其对非生物胁迫响应的分析[J]. 中国农业科学, 2022, 55(19): 3807-3821. |
[11] | 李依镁,王娇,王萍,师恺. 番茄糖转运蛋白SlSTP2在防御细菌性叶斑病中的功能[J]. 中国农业科学, 2022, 55(16): 3144-3154. |
[12] | 方瀚墨,胡璋健,马巧梅,丁淑婷,王萍,王安然,师恺. 番茄SlβCA3在防御丁香假单胞菌番茄致病变种中的功能[J]. 中国农业科学, 2022, 55(14): 2740-2751. |
[13] | 孟宪敏,季延海,孙旺旺,武占会,储昭胜,刘明池. 两个番茄品种叶绿体超微结构及光合生理对弱光胁迫的响应[J]. 中国农业科学, 2021, 54(5): 1017-1028. |
[14] | 王萍,郑晨飞,王娇,胡璋健,邵淑君,师恺. 番茄转录因子SlNAC29在调控植株衰老中的作用及机理[J]. 中国农业科学, 2021, 54(24): 5266-5276. |
[15] | 李姜玲,杨澜,阮仁武,李中安. 杂交小麦苗期光合特性分析及其对强优势组合的早期预测[J]. 中国农业科学, 2021, 54(23): 4996-5007. |
|