中国农业科学 ›› 2022, Vol. 55 ›› Issue (5): 825-836.doi: 10.3864/j.issn.0578-1752.2022.05.001
赵凌(),张勇,魏晓东,梁文化,赵春芳,周丽慧,姚姝,王才林,张亚东(
)
收稿日期:
2021-10-20
接受日期:
2021-11-25
出版日期:
2022-03-01
发布日期:
2022-03-08
通讯作者:
张亚东
作者简介:
赵凌,Tel:025-84390306;E-mail: 基金资助:
ZHAO Ling(),ZHANG Yong,WEI XiaoDong,LIANG WenHua,ZHAO ChunFang,ZHOU LiHui,YAO Shu,WANG CaiLin,ZHANG YaDong(
)
Received:
2021-10-20
Accepted:
2021-11-25
Online:
2022-03-01
Published:
2022-03-08
Contact:
YaDong ZHANG
摘要:
【目的】挖掘新的控制水稻叶绿素含量的相关位点和基因,为水稻叶绿素含量的遗传机制研究提供理论基础。【方法】利用剑叶叶色存在明显差异的粳稻TD70和籼稻Kasalath杂交构建的包含186个株系的重组自交系群体为供试材料,通过对两亲本及RIL群体重测序,构建了包含12 328个Bin标记的高密度遗传图谱。RIL群体及亲本分别于2011和2020年正季在江苏省农业科学院种植。抽穗后第3天使用叶绿素仪测定剑叶SPAD值。使用IciMappingv3.4软件完备区间作图法,对控制水稻抽穗期剑叶叶绿素含量的QTL进行鉴定。利用便携式光合仪测定RIL群体中20个SPAD极端株系的水分利用效率、蒸腾速率、气孔导度和净光合速率等光合作用参数。【结果】2年共检测到19个抽穗期剑叶叶绿素含量相关QTL,分别分布在除第8、9和10染色体外的其他9个染色体上。单一QTL贡献率为3.09%—13.13%,LOD值为2.74—14.08。通过物理位置比对,发现其中10个QTL与前人定位到的叶绿素含量相关位点在相同或邻近区域。qCHL2-1和qCHL5-1 2年均被检测到,表现出较强的稳定性。qCHL2-1位于第2染色体的7.63—7.71 Mb处,2年LOD值分别为14.08和7.93,贡献率分别为13.13%和7.94%。qCHL5-1位于第5染色体的23.44—23.49 Mb处,2年LOD值分别为4.31和3.76,贡献率分别为3.57%和4.82%。结合功能注释和亲本间序列分析,分别在qCHL2-1和qCHL5-1染色体区间内找到2个与剑叶叶绿素含量相关的基因Os02g0236000和Os05g0476700。这两个基因的核苷酸序列在两亲本间均存在差异。Os02g0236000编码水稻天冬氨酸氨基转移酶(AAT1),是水稻氮代谢途径中的重要酶,与蛋白质及氨基酸含量有关。Os05g0476700编码叶面斑点相关蛋白,推测与叶片颜色有关。根据AAT1在CDS+273 bp有无突变对RIL群体进行等位型分类。在20个SPAD极端株系中,AAT1不同等位型株系的剑叶SPAD值和水分利用效率、蒸腾速率、气孔导度和净光合速率等光合作用指标均存在显著差异。【结论】共检测到19个控制水稻抽穗期剑叶叶绿素含量QTL,鉴定了2个稳定存在的QTL——qCHL2-1和qCHL5-1,在这两个QTL区间筛选到2个可能调控水稻抽穗期剑叶叶绿素含量的基因。其中1个AAT1(Os02g0236000)不同等位型的光合作用参数在20个极端SPAD株系中存在显著差异,推测其为最可能的候选基因,可用于后续剑叶叶绿素调控基因的功能研究。
赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL[J]. 中国农业科学, 2022, 55(5): 825-836.
ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map[J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
表2
检测到控制抽穗期剑叶叶绿素含量的QTL"
年份 Year | QTL | 染色体 Chr. | 标记区间 Marker interval | 置信区间 Confidence interval (Mb) | LOD | 贡献率 PVE (%) | 加性效应 Additive effect |
---|---|---|---|---|---|---|---|
2011 | qCHL1-1 | 1 | RBN0894—RBN0895 | 25.69—25.72 | 6.46 | 6.47 | -1.43 |
qCHL1-2 | 1 | RBN1045—RBN1046 | 31.76—31.83 | 6.45 | 5.55 | -1.18 | |
qCHL2-1* | 2 | RBN1570—RBN1571 | 7.63—7.71 | 14.08 | 13.13 | -1.81 | |
qCHL2-2 | 2 | RBN2335—RBN2336 | 35.12—35.15 | 2.74 | 3.76 | -1.14 | |
qCHL3-1 | 3 | RBN3011—RBN3012 | 25.41—25.44 | 4.85 | 4.04 | 0.99 | |
qCHL5-1* | 5 | RBN5254—RBN5255 | 23.44—23.49 | 4.31 | 3.57 | 0.91 | |
qCH6-1 | 6 | RBN6496—RBN6497 | 29.42—29.48 | 4.67 | 3.92 | -1.11 | |
qCH7 | 7 | RBN7384—RBN7385 | 24.35—24.37 | 5.09 | 7.79 | 2.37 | |
2020 | qCHL1-3 | 1 | RBN0126—RBN0127 | 3.16—3.22 | 8.22 | 10.95 | 1.42 |
qCHL1-4 | 1 | RBN0145—RBN0146 | 3.93—3.95 | 9.19 | 9.64 | 1.32 | |
qCHL2-1* | 2 | RBN1570—RBN1571 | 7.63—7.71 | 7.93 | 7.94 | -1.24 | |
qCHL2-3 | 2 | RBN2330—RBN2331 | 35.03—35.10 | 3.27 | 8.01 | -1.28 | |
qCHL3-2 | 3 | RBN2365—RBN2366 | 0.33—0.36 | 4.52 | 3.54 | 0.93 | |
qCHL4 | 4 | RBN4072—RBN4073 | 23.30—23.38 | 7.47 | 7.71 | -1.17 | |
qCHL5-2 | 5 | RBN4489—RBN4490 | 0.19—0.26 | 4.72 | 4.68 | 1.11 | |
qCHL5-1* | 5 | RBN5254—RBN5255 | 23.44—23.49 | 3.76 | 4.82 | 0.86 | |
qCH6-2 | 6 | RBN6322—RBN6323 | 24.40—24.50 | 5.63 | 5.68 | -1.01 | |
qCHL11 | 11 | RBN10911—RBN10912 | 20.63—20.70 | 4.00 | 3.89 | 0.84 | |
qCHL12-1 | 12 | RBN11570—RBN11571 | 8.13—8.45 | 2.84 | 3.09 | 1.73 | |
qCHL12-2 | 12 | RBN12254—RBN12255 | 25.50—25.54 | 6.10 | 4.98 | -1.03 | |
qCHL12-3 | 12 | RBN12262—RBN12263 | 25.70—25.74 | 3.84 | 5.31 | -0.98 |
表3
2个重复检测到QTL区间内基因的注释"
QTL | 染色体 Chr. | 物理距离 Interval (Mb) | 基因 Gene | 基因功能注释 Annotation |
---|---|---|---|---|
qCHL2-1 | 2 | 7.63—7.71 | Os02g0235000 | 肌动蛋白相关蛋白2/3复合亚基3类似蛋白 Similar to Actin-related protein 2/3 complex subunit 3 |
Os02g0235600 | 60S核糖体蛋白L11-2 (L16)类似蛋白 Similar to 60S ribosomal protein L11-2 (L16) | |||
Os02g0235900 | 包含氧氧化还原酶共价FAD结合位点结构域的蛋白 Oxygen oxidoreductase covalent FAD-binding site domain containing protein | |||
Os02g0236000 | 天冬氨酸氨基转移酶 Aspartate aminotransferase (EC 2.6.1.1) | |||
qCHL5-1 | 5 | 23.44—23.49 | Os05g0476466 | CBL互作蛋白激酶28类似蛋白 Similar to CBL-interacting protein kinase 28 |
Os05g0476700 | U-box E3泛素连接酶,斑点叶 U-box E3 ubiquitin ligase, spotted leaf | |||
Os05g0477300 | 含有核糖体蛋白S26e结构域蛋白 Ribosomal protein S26e domain containing protein | |||
Os05g0477500 | 含DUF3615结构域未知功能蛋白 Protein of unknown function DUF3615 domain containing protein | |||
Os05g0477600 | α-扩展蛋白OsEXPA4 Alpha-expansion OsEXPA4 |
表4
本研究定位的QTL和已知叶绿素含量相关位点的位置比较"
本研究This study | 已发表的相关位点/基因 Known QTLs/Genes | |||||
---|---|---|---|---|---|---|
QTL | 染色体 Chr. | 物理位置 Position (Mb) | 性状/基因 Character/Gene | 定位群体/基因登录号 Population /Acc. No. | 物理位置 Position (Mb) | 参考文献 Reference |
qCHL1-1 | 1 | 25.69—25.72 | 抽穗后7 d叶绿素含量 Chlorophyll content at 7d after heading | 日本晴/Kasalath//日本晴BILs Nipponbare/Kasalath//Nipponbare BILs | 25.13—26.19 | [ |
qCHL1-2 | 1 | 31.76—31.83 | 干旱胁迫下的剑叶或倒2叶叶绿素含量 Chlorophyll content in drought stress | 珍汕97B/IRAT109 RILs Zhenshan 97B/IRAT109 RILs | 30.1—33.86 | [ |
分蘖期上部展开叶叶绿素含量 Chlorophyll content of up most fully expanded leaf at tillering period | ZYQ8/JX17 DHs | 30.06—32.06 | [ | |||
拔节期剑叶叶绿素含量 Chlorophyll content of flag leaf at jointing stage | 沈农0530-9/北陆129 F2(F2:3) Shennong0530-9/Habataki F2 (F2:3) | 30.17—34.1 | [ | |||
qCHL2-1 | 2 | 7.63—7.71 | 成熟期剑叶叶绿素含量 Chlorophyll content of flag leaf at mature stage | 沈农265/丽江新团黑谷RILs Shennong 265/Lijiangxintuanheigu RILs | 2.88—9.47 | [ |
分蘖期剑叶叶绿素含量 Chlorophyll content of flag leaf at tillering stage | 岗46B/A232 RILs Gang 46B/A232 RILs | 5.20—8.76 | [ | |||
发育期剑叶叶绿素b含量 Leaf chlorophyll b content at developmental stage | ZS97/WY2 DHs | 7.43—11.41 | [ | |||
qCHL3-1 | 3 | 25.41—25.44 | 叶绿素b还原酶 Chlorophyll b reductase | LOC_Os03g45194 | 25.52 | [ |
qCHL4 | 4 | 23.30—23.38 | 分蘖期剑叶叶绿素含量 Chlorophyll content of flag leaf at tillering stage | 岗46B/A232 RILs Gang 46B/A232 RILs | 23.17—31.27 | [ |
苗期叶绿素含量 Chlorophyll content at seedling stage | 珍汕97A/明恢63 RILs Zhenshan 97A/Minghui 63 RILs | 22.28—26.86 | [ | |||
抽穗5 和25 d叶绿素含量的降低 Decreased chlorophyll content between leaves at 5 and 25 days after heading | Nipponbare/Kasalath BC1F1 | 22.27—26.38 | [ | |||
qCHL5-1 | 5 | 23.44—23.49 | 抽穗7d剑叶叶绿素b含量 Chlorophyll b content of flag leaf at 7 days after heading | 窄叶青8号/京系17 DH Zhaiyeqing 8/Jingxi 17 DH | 19.27—31.45 | [ |
齐穗期剑叶叶绿素含量 Chlorophyll b content of flag leaf at full-heading stage | Dular/Lemont RILs | 3.89—24.09 | [ | |||
开花期剑叶叶绿素含量 Degree of greenness of flag leaf at heading stage | 珍汕97B/IRAT109 RILs Zhenshan 97/IRAT109 RILs | 20.17—26.84 | [ | |||
孕穗期剑叶叶绿素b含量 Chlorophyll b contents of flag leaf at booting stage | 十和田/丽江新团黑谷RILs Towada/Lijiangxintuanheigu RILs | 0.46—23.95 | [ | |||
谷氨酸-1-半醛转氨酶基因GSA Glutamate -1-semialdehyde aminotransferase | LOC_Os05g39770 | 23.35 | [ | |||
qCHL5-2 | 5 | 0.19—0.26 | 干旱胁迫下的剑叶或倒2叶叶绿素含量 Chlorophyll content of leaves in drought stress | 珍汕97B/IRAT109 RILs Zhenshan 97B/IRAT109 RILs | 0.1—0.18 | [ |
qCHL6 | 6 | 24.40—24.50 | 干旱胁迫下的剑叶或倒2叶叶绿素含量 Chlorophyll content of leaves in drought stress | 珍汕97B/IRAT109 RILs Zhenshan 97B/IRAT109 RILs | 24.03—28.13 | [ |
抽穗后5d和25 d叶绿素含量的降低 Decreased chlorophy content between leaves at 5 and 25 days after heading | Nipponbare/Kasalath BC1F1 | 27.61—31.17 | [ | |||
qCH7 | 7 | 24.35—24.37 | 羟甲基后胆色素原合酶 Hydroxymethylbilane synthase | LOC_Os07g40250 | 24.13 | [ |
硝酸盐转运蛋白基因OsNPF7.1 Nitrate and di/tripeptide transporter OsNPF7.1 | LOC_Os07g41250 | 24.72 | [ | |||
qCHL11 | 11 | 20.63—20.70 | 成熟期剑叶叶绿素含量 Chlorophyll content of flag leaf at mature stage | 沈农265/丽江新团黑谷RILs Shennong 265/Lijiangxintuanheigu RILs | 18.13—28.28 | [ |
[1] |
CURRAN P J, DUNGAN J L, GHOLZ H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology, 1990, 7:33-48.
doi: 10.1093/treephys/7.1-2-3-4.33 |
[2] |
FILELLA I, SERRANO I, SERRA J, PEÑUELAS J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science, 1995, 35:1400-1405.
doi: 10.2135/cropsci1995.0011183X003500050023x |
[3] |
NOODEN L D, GUIAMET J J, JOHN I. Senescence mechanisms. Physiologia Plantarum, 1997, 101:746-753.
doi: 10.1111/ppl.1997.101.issue-4 |
[4] |
NEUFELD H S, CHAPPELKA A H, SOMERS G L, BURKEY K O, DAVISON A W, FINKELSTEIN P L. Visible foliar injury caused by ozone alters the relationship between SPAD meter readings and chlorophyll concentrations in cut leaf coneflower. Photosynthesis Research, 2006, 87:281-286.
doi: 10.1007/s11120-005-9008-x |
[5] | XUE D W, CHEN M C, ZHOU M X, CHEN S, MAO Y, ZHANG G P. QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content. Journal of Zhejiang University (Science B), 2008, 9:938-943. |
[6] |
LI Z K, PINSON S R M, STANSEL J W, PATERSON A H. Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.). Molecular Breeding, 1998, 4:419-426.
doi: 10.1023/A:1009608128785 |
[7] |
TAKAI T, KONDO M, YANO M, YAMAMOTO T. A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice, 2010, 3:172-180.
doi: 10.1007/s12284-010-9047-6 |
[8] |
YANG L, WANG J, LEI L, WANG J, SUBHANI M J, LIU H, JIAN S, ZHENG H, ZHAO H, ZOU D. QTL mapping for heading date, leaf area and chlorophyll content under cold and drought stress in two related recombinant inbred line populations (japonica rice) and meta-analysis. Plant Breeding, 2018, 137:527-545.
doi: 10.1111/pbr.2018.137.issue-4 |
[9] |
YOO J H, PARK J H, CHO S H, YOO S C, LI J, ZHANG H, KIM K. The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces. Plant Molecular Biology, 2011, 77:631-641.
doi: 10.1007/s11103-011-9839-0 |
[10] |
KANBE T, SASAKI H, AOKI N, YAMAGISHI T, OHSUGI R. The QTL analysis of RuBisCO in flag leaves and non-structural carbohydrates in leaf sheaths of rice using chromosome segment substitution lines and backcross progeny F2 populations. Plant Production Science, 2009, 12(2):224-232.
doi: 10.1626/pps.12.224 |
[11] |
姜树坤, 张喜娟, 徐正进, 陈温福. 粳稻叶绿素含量QTL与其合成降解相关基因的比较分析. 作物学报, 2010, 36(3):376-384.
doi: 10.3724/SP.J.1006.2010.00376 |
JIANG S K, ZHANG X J, XU Z J, CHEN W F. Comparison between QTLs for chlorophyll content and genes controlling chlorophyll biosynthesis and degradation in japonica rice (Oryza sativa L.). Acta Agronomica Sinica, 2010, 36(3):376-384. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00376 |
|
[20] | 赵全志, 丁艳锋, 王强盛, 黄丕生, 凌启鸿. 水稻叶色变化与氮素吸收的关系. 中国农业科学, 2006, 39(5):916-921. |
ZHAO Q Z, DING Y F, WANG Q S, HUANG P S, LING Q H. Relationship between leaf color and nitrogen uptake of rice. Scientia Agricultura Sinica, 2006, 39(5):916-921. (in Chinese) | |
[12] | 叶卫军. 水稻叶绿素含量QTL qFCC7_L的精细定位&叶色控制基因WSL12的克隆与功能分析[D]. 杭州: 浙江大学, 2016. |
YE W J. Fine mapping leaf Chorlphy II content QTL qFCC7 and cloning and function analysis of leaf color gene WSL12[D]. Hangzhou: Zhejiang University, 2016. (in Chinese) | |
[21] | 范淑秀, 王嘉宇, 毛艇, 徐正进. 水稻孕穗期叶绿素含量的QTL定位. 华北农学报, 2010, 25(4):69-72. |
FANG S X, WANG J Y, MAO T, XU Z J. Identification of QTLs for chlorophyll content at booting stage in rice. Acta Agriculturae Boreali-Sinica, 2010, 25(4):69-72. (in Chinese) | |
[22] | 沈波, 庄杰云, 张克勤, 戴伟民, 鲁烨, 傅丽卿, 丁佳铭, 郑康乐. 水稻叶绿素含量的QTL及其与环境互作分析. 中国农业科学, 2005, 38(10):1937-1943. |
SHEN B, ZHUANG J Y, ZHANG K Q, DAI W M, LU Y, FU L Q, DING J M, ZHENG K L. Analysis of interaction between QTL and environment on chlorophyll contents in rice. Scientia Agricultura Sinica, 2005, 38(10):1937-1943. (in Chinese) | |
[23] |
YANO M, HARUSHIMA Y, NAGAMURA Y, KURATA N, MINOBE Y, SASAKI T. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theoretical Applied Genetics, 1997, 95(7):1025-1032.
doi: 10.1007/s001220050658 |
[24] | KOTHARI K S, DANSANA P K, GIRI J, TYAGI A K. Rice stress associated protein 1 (OsSAP1) interacts with aminotransferase (OsAMTR1) and pathogenesis-related 1a protein (OsSCP) and regulates abiotic stress responses. Frontiers in Plant Science, 2016, 7:1057. |
[25] | 董骥驰, 杨靖, 郭涛, 陈立凯, 陈志强, 王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位. 作物学报, 2018, 44(6):938-946. |
DONG J C, YANG J, GUO T, CHEN L K, CHEN Z Q, WANG H. QTL mapping for heading date in rice using high-density Bin map. Acta Agronomica Sinica, 2018, 44(6):938-946. (in Chinese) | |
[13] | 唐立群, 肖层林, 王伟平. SNP分子标记的研究及其应用进展. 中国农学通报, 2012, 28(12):154-158. |
TANG L Q, XIAO C L, WANG W P. Research and application progress of SNP markers. Chinese Agricultural Science Bulletin, 2012, 28(12):154-158. (in Chinese) | |
[26] |
胡颂平, 梅捍卫, 邹桂花, 刘鸿艳, 刘国兰, 蔡润, 李明寿, 罗利军. 正常与水分胁迫下水稻叶片叶绿素含量的QTL分析. 植物生态学报, 2006, 30(3):479-486.
doi: 10.17521/cjpe.2006.0064 |
HU S P, MEI H W, ZOU G H, LIU H Y, LIU G L, CAI R, LI M S, LUO L J. Analysis of quantitative trait loci for chlorophyll content in rice leaves under drought stress. Chinese Journal of Plant Ecology, 2006, 30(3):479-486. (in Chinese)
doi: 10.17521/cjpe.2006.0064 |
|
[27] |
TENG S, QIAN Q, ZENG D, KUNIHIRO Y, KAN F, HUANG D, ZHU L. QTL analysis of leaf photosynthetic rate and related physiological traits in rice (Oryza sativa L.). Euphytica, 2004, 135:1-7.
doi: 10.1023/B:EUPH.0000009487.89270.e9 |
[28] | 刘进, 姚晓云, 范淑秀, 黎毛毛, 郭乃辉, 王鑫瑞, 王嘉宇, 陈温福. 水稻叶绿素含量和穗部性状的QTL及其相互关系分析. 沈阳农业大学学报, 2018, 49(6):641-648. |
LIU J, YAO X Y, FAN S X, LI M M, GUO N H, WANG Q R, WANG J Y, CHEN W F. Mapping of QTLs for chlorophyll content and panicle traits and their relationship in rice (Oryza Sativa L.). Journal of Shenyang Agricultural University, 2018, 49(6):641-648. (in Chinese) | |
[29] | 胡茂龙, 张迎信, 孔令娜, 杨权海, 王春明, 翟虎渠, 万建民. 利用回交重组自交系群体检测3个水稻光合功能相关性状QTL. 作物学报, 2006, 32(11):1630-1635. |
HU M L, ZHANG Y X, KONG L N, YANG Q H, WANG C M, ZHAI H Q, WAN J M. QTL Detection for three traits associated with photosynthetic functions in rice using backcross inbred lines. Acta Agronomica Sinica, 2006, 32(11):1630-1635. (in Chinese) | |
[30] | 李永洪, 李传旭, 刘成元, 何珊, 向箭宇, 谢戎. 利用岗46B/A232重组自交系群体分析叶绿素含量相关QTL. 西南农业学报, 2018, 31(11):2223-2228. |
LI Y H, LI C X, LIU C Y, HE S, XIANG J Y, XIE R. QTL analysis for chlorophyll content using recombinant inbred lines of Gang46B/A232. Southwest China Journal of Agricultural Sciences, 2018, 31(11):2223-2228. (in Chinese) | |
[31] |
JIANG G, ZENG J, HE Y. Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations. Gene, 2014, 536:287-295.
doi: 10.1016/j.gene.2013.12.010 |
[32] | 杨国华, 李邵清, 冯玲玲, 孔进, 李辉, 李阳生. 水稻剑叶叶绿素含量相关性状的QTL分析. 武汉大学学报(理学版), 2006, 52(6):751-756. |
YANG G H, LI S Q, FENG L L, KONG J, LI H, LI Y S. Analysis of QTL underlying the traits relative to the chlorophyll contents of the flag leaf in rice. Journal of Wuhan University (Natural Science Edition), 2006, 52(6):751-756. (in Chinese) | |
[14] | 王朝欢, 宋博文, 余思佳, 肖武名, 黄明. 基于全基因组测序构建水稻RIL群体遗传图谱. 华南农业大学学报, 2021, 42(2):44-50. |
WANG C H, SONG B W, YU S J, XIAO W M, HUANG M. Construction of a genetic map of rice RILs based on whole genome sequencing. Journal of South China Agricultural University, 2021, 42(2):44-50. (in Chinese) | |
[15] | 董少玲, 张颖慧, 张亚东, 陈涛, 赵庆勇, 朱镇, 周丽慧, 姚姝, 赵凌, 王才林. 水稻重组自交系分子遗传图谱构建及分蘖角的QTL检测. 江苏农业学报, 2012, 28(2):236-242. |
DONG S L, ZHANG Y H, ZHANG Y D, CHEN T, ZHAO Q Y, ZHU Z, ZHOU L H, YAO S, ZHAO L, WANG C L. Construction of molecular genetic linkage map based on a rice RIL population and detection of QTL for tiller angle. Jiangsu Journal of Agricultural Sciences, 2012, 28(2):236-242. (in Chinese) | |
[16] | 张亚东, 梁文化, 赫磊, 赵春芳, 朱镇, 陈涛, 赵庆勇, 赵凌, 姚姝, 周丽慧, 路凯, 王才林. 水稻RIL群体高密度遗传图谱构建及粒型QTL定位. 中国农业科学, 2021, 54(24):5163-5176. |
ZHANG Y D, LIANG W H, HE L, ZHAO C F, ZHU Z, CHEN T, ZHAO Q Y, ZHAO L, YAO S, ZHOU L H, LU K, WANG C L. Construction of high-density genetic map and QTL analysis of grain shape in rice RIL population. Scientia Agricultura Sinica, 2021, 54(24):5163-5176. (in Chinese) | |
[33] | 孙小霞, 邓家耀, 江宝月, 贾小丽, 熊君, 林文雄. 水稻生育后期叶绿素含量的QTLs及其与环境的互作分析. 应用生态学报, 2008, 19(12):2651-2655. |
SUN X X, DENG J Y, JIANG B Y, JIA X L, XIONG J, LIN W X. Analysis on quantitative trait loci associated with leaf chlorophyll content and their interactions with environment at late growth stage of rice. Chinese Journal of Applied Ecology, 2008, 19(12):2651-2655. (in Chinese) | |
[17] |
MENG L, LI H, ZHANG L, WANG J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. Crop Journal, 2015, 3:269-283.
doi: 10.1016/j.cj.2015.01.001 |
[18] | MCCOUCH S R, CHO Y G, YANO M, PAUL E, BLINSTRUB M, MORISHIMA H, MCCOUCH S, CHO Y, PAUL E, MORISHIMA H. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14:11-13. |
[19] | 周莹. 水稻中天冬氨酸转氨酶的分子生物学研究和转基因应用[D]. 武汉: 华中农业大学, 2009. |
ZHOU Y. Research of progress molecular biology and application of aspartate aminotransferase in rice[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese) | |
[34] |
YUE B, XUE W Y, LUO L J, XING Y Z. QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Genetica Sinica, 2006, 33:824-832.
doi: 10.1016/S0379-4172(06)60116-9 |
[35] | 杨树明, 刘关所, 张素华. 不同生长环境下水稻孕穗期叶绿素QTL定位. 云南大学学报(自然科学版), 2017, 39(4):684-690. |
YANG S M, LIU G S, ZHANG S H. Identification of QTL for chlorophyll contents at booting stage of rice under different growing environments Journal of Yunnan University (Natural Sciences Edition), 2017, 39(4):684-690. (in Chinese) | |
[36] | CUI K, PENG S, XING Y, YU S, XU C. Molecular dissection of relationship between seedling characteristics and seed size in rice. Acta Botanica Sinica, 2002, 44:702-707. |
[37] |
SATO Y, MORITA R, KATSUMA S, NISHIMURA M, KUSABA M. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. The Plant Journal, 2010, 57(1):120-131.
doi: 10.1111/tpj.2008.57.issue-1 |
[38] |
ISHIMARU K, YANO M, AOKI N, ONO K, HIROSE T, LIN SY, MONNA L, SASAKI T, OHSUGI R. Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. Theoretical and Applied Genetics, 2001, 102(6/7):793-800.
doi: 10.1007/s001220000467 |
[1] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
[2] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[3] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[4] | 桑世飞,曹梦雨,王亚男,王君怡,孙晓涵,张文玲,姬生栋. 水稻氮高效相关基因的研究进展[J]. 中国农业科学, 2022, 55(8): 1479-1491. |
[5] | 唐华苹,陈黄鑫,李聪,苟璐璐,谭翠,牟杨,唐力为,兰秀锦,魏育明,马建. 基于55K SNP芯片的普通小麦穗长非条件和条件QTL分析[J]. 中国农业科学, 2022, 55(8): 1492-1502. |
[6] | 韩晓彤,杨保军,李苏炫,廖福兵,刘淑华,唐健,姚青. 基于图像的水稻纹枯病智能测报方法[J]. 中国农业科学, 2022, 55(8): 1557-1567. |
[7] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[8] | 王慧玲, 闫爱玲, 孙磊, 张国军, 王晓玥, 任建成, 徐海英. 鲜食葡萄果实单萜合成关键基因的eQTL分析[J]. 中国农业科学, 2022, 55(5): 977-990. |
[9] | 张亚玲, 高清, 赵羽涵, 刘瑞, 付忠举, 李雪, 孙宇佳, 靳学慧. 黑龙江省水稻种质稻瘟病抗性评价及抗瘟基因结构分析[J]. 中国农业科学, 2022, 55(4): 625-640. |
[10] | 陈婷婷, 符卫蒙, 余景, 奉保华, 李光彦, 符冠富, 陶龙兴. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478. |
[11] | 赫磊,路凯,赵春芳,姚姝,周丽慧,赵凌,陈涛,朱镇,赵庆勇,梁文化,王才林,朱丽,张亚东. 水稻穗顶端退化突变体paa21的表型分析及基因克隆[J]. 中国农业科学, 2022, 55(24): 4781-4792. |
[12] | 杜文婷,雷肖肖,卢慧宇,王云凤,徐佳星,罗彩霞,张树兰. 氮肥减量施用对我国三大粮食作物产量的影响[J]. 中国农业科学, 2022, 55(24): 4863-4878. |
[13] | 赵春芳,赵庆勇,吕远大,陈涛,姚姝,赵凌,周丽慧,梁文化,朱镇,王才林,张亚东. 半糯粳稻品种核心标记的筛选及DNA指纹图谱的构建[J]. 中国农业科学, 2022, 55(23): 4567-4582. |
[14] | 刘淑军,李冬初,黄晶,刘立生,吴丁,李照全,吴远帆,张会民. 水稻油菜轮作下稻草还田和钾肥对土壤团聚体及钾素分布的影响[J]. 中国农业科学, 2022, 55(23): 4651-4663. |
[15] | 刘进,胡佳晓,马小定,陈武,勒思,Jo Sumin,崔迪,周慧颖,张立娜,Shin Dongjin,黎毛毛,韩龙植,余丽琴. 水稻RIL群体高密度遗传图谱的构建及苗期耐热性QTL定位[J]. 中国农业科学, 2022, 55(22): 4327-4341. |
|