中国农业科学 ›› 2022, Vol. 55 ›› Issue (3): 451-466.doi: 10.3864/j.issn.0578-1752.2022.03.003
姜芬芬(),孙磊,刘方东,王吴彬,邢光南,张焦平,张逢凯,李宁,李艳,贺建波(
),盖钧镒(
)
收稿日期:
2021-08-13
接受日期:
2021-10-11
出版日期:
2022-02-01
发布日期:
2022-02-11
通讯作者:
贺建波,盖钧镒
作者简介:
姜芬芬, E-mail: 基金资助:
JIANG FenFen(),SUN Lei,LIU FangDong,WANG WuBin,XING GuangNan,ZHANG JiaoPing,ZHANG FengKai,LI Ning,LI Yan,HE JianBo(
),GAI JunYi(
)
Received:
2021-08-13
Accepted:
2021-10-11
Online:
2022-02-01
Published:
2022-02-11
Contact:
JianBo HE,JunYi GAI
摘要: 目的 大豆是短日喜温植物,对光温(日长、温度)条件敏感。大豆对光温反应的敏感性是大豆重要的驯化性状和适应性性状。在自然条件下,地理位置和/或播种季节是决定野生和栽培大豆分化的重要生态因素,这两个因素均是通过日长和温度等环境因素来调控大豆的生长发育。因而研究和比较野生和栽培大豆生长发育阶段光温综合反应特性的地理和季节分化,可以为大豆引种和适应性育种提供理论依据。 方法 选取1 519份世界代表性野生和栽培大豆,在安徽当涂进行2年春播和夏播田间试验,使用播季间生育期差异作为品种光温综合反应敏感性(photo-thermal comprehensive response sensitivity,PTCRS)评价指标,研究各地理生态型大豆生长发育阶段的光温反应特性。 结果(1)大豆的光温反应特性存在于生长发育的全过程。(2)野生大豆由南向北迁移时,生育前期和全生育期PTCRS减小,生育后期PTCRS增大,光温反应类型由前敏后钝变为前钝后敏,全生育期光温反应敏感。(3)野生大豆驯化为栽培大豆后,生育前期和全生育期PTCRS分别减小20%和16%,生育后期PTCRS变化较小,主要光温反应类型由前敏后钝变为前钝后敏和前钝后钝。(4)夏秋大豆和春大豆的全生育期PTCRS均表现由南向北逐渐减小;生育前期和生育后期PTCRS的地理分化则存在差异,其中,由南向北迁移时,夏秋大豆生育前期PTCRS减小、生育后期PTCRS先增后减,春大豆生育前期PTCRS无明显变化、生育后期PTCRS减小。(5)以中国黄淮和南方作为栽培大豆的起源中心,向北传播至中国东北、俄罗斯远东和瑞典南部,生育前期、后期和全生育期PTCRS均大幅减小;向东传播至朝鲜半岛和日本岛以及向西传播至北美北部、北美南部和中南美,生育前期和全生育期PTCRS减小,生育后期PTCRS无明显变化;向南传播至东南亚、南亚和非洲,生育前期和全生育期PTCRS增大、生育后期PTCRS无明显变化。(6)同一生态区不同生态型间PTCRS比较,春大豆生育前期、后期和全生育期PTCRS均最小,野生大豆生育前期PTCRS强于夏秋大豆,生育后期则表现相反,全生育期与夏秋大豆无显著差异。不同地理-播季生态型间PTCRS比较,生育前期PTCRS:南方野生大豆最敏感,其次是长江中下游野生大豆和南方夏秋大豆,然后是黄淮野生大豆和长江中下游夏秋大豆,余下地理生态型间无显著差异,均表现较钝感;生育后期PTCRS:长江中下游夏秋大豆最敏感,其次是东北和黄淮野生大豆及南方和黄淮夏秋大豆,余下地理生态型间差异较小,光温反应均较钝感;全生育期PTCRS:南方和长江中下游的野生及夏秋大豆间无显著差异,均表现敏感,其次是黄淮野生大豆,然后是东北野生大豆和黄淮夏秋大豆,春大豆PTCRS最小,且随纬度升高而显著减小。 结论 由地理和播季决定的光温综合条件是影响大豆生长发育的关键因素,不同地理-播季生态类型的野生和栽培大豆生育阶段对光温综合反应存在差异。中国黄淮及南方的栽培大豆向世界不同纬度的地理区域传播时,生育阶段光温综合反应的变化不同。全生育期光温反应敏感是大豆的原始性状,长江中下游的夏秋大豆可能为最具这种野生原始性状的栽培类型。
姜芬芬, 孙磊, 刘方东, 王吴彬, 邢光南, 张焦平, 张逢凯, 李宁, 李艳, 贺建波, 盖钧镒. 世界大豆生育阶段光温综合反应的地理分化和演化[J]. 中国农业科学, 2022, 55(3): 451-466.
JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans[J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
表1
供试材料的地理分布"
栽培大豆地理分布 Geographic region of cultivated soybean | 中国大陆野生和栽培大豆生态区分布 Eco-region of Chinese mainland wild and cultivated soybean | |||||||
---|---|---|---|---|---|---|---|---|
地理亚群 Geo-subpopulation | 地理区域 Geo-region | 熟期组 Maturity group | 材料数 No. of materials | 类型 Type | 生态区 Eco-region | 熟期组 Maturity group | 材料数 No. of materials | |
O | 中国黄淮HCHN | Ⅰ-Ⅴ | 226 | 野生大豆 WA G. soja | Ⅳ | 68 | ||
中国南方SCHN | 0-Ⅸ | 542 | Ⅲ | 76 | ||||
中国台湾TCHN | Ⅴ-Ⅷ | 11 | Ⅱ | 71 | ||||
A | 中国东北NCHN | 000-Ⅳ | 173 | Ⅰ | 52 | |||
俄罗斯远东RUFE | 000-Ⅲ | 38 | 合计Sum | 267 | ||||
瑞典南部SSWE | 000 | 17 | 栽培春大豆 SP G. max | Ⅳ | 0-Ⅴ | 168 | ||
B | 朝鲜半岛KORP | 0-Ⅵ | 20 | Ⅲ | 0-Ⅳ | 33 | ||
日本岛JPAN | 0-Ⅶ | 38 | Ⅰ | 000-Ⅳ | 173 | |||
C | 东南亚SEAS | Ⅴ-Ⅹ | 25 | 合计Sum | 374 | |||
南亚SASI | Ⅳ-Ⅹ | 15 | 栽培夏秋大豆 SA G. max | Ⅳ | Ⅳ-Ⅸ | 178 | ||
非洲AFRI | Ⅵ-Ⅹ | 11 | Ⅲ | Ⅲ-Ⅷ | 163 | |||
D | 北美北部NNAM | 000-Ⅴ | 69 | Ⅱ | Ⅰ-Ⅵ | 226 | ||
北美南部SNAM | Ⅳ-Ⅹ | 37 | 合计Sum | 567 | ||||
中南美CSAM | Ⅴ-Ⅹ | 30 | 总计Total | 1208 | ||||
总计Total | 1252 |
表2
生育期相关性状和光温综合反应敏感性描述统计"
性状 Trait | 环境 Env. | 组距 Class interval | 材料数 No. of materials | 均值a Mean | 变幅 Range | 遗传变 异系数 GCV (%) | 遗传率 h2(%) | |||||||||||||
生育前期 DSF (d) | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 | 100-110 | 110-120 | 120-130 | 130-140 | 140-150 | |||||||
18SUS | 278 | 384 | 310 | 241 | 185 | 94 | 27 | 1519 | 45.4 | 20-88 | 31.9 | 99.6 | ||||||||
19SUS | 211 | 461 | 284 | 241 | 192 | 80 | 24 | 1493 | 45.4 | 22-85 | 31.8 | 99.3 | ||||||||
18SPS | 26 | 330 | 389 | 187 | 61 | 96 | 124 | 76 | 89 | 69 | 57 | 11 | 1515 | 62.4 | 25-136 | 45.5 | 99.5 | |||
19SPS | 7 | 200 | 304 | 303 | 138 | 125 | 119 | 53 | 84 | 70 | 47 | 28 | 1 | 1479 | 65.7 | 27-143 | 40.5 | 99.0 | ||
生育后期 DFM (d) | 32-40 | 40-48 | 48-56 | 56-64 | 64-72 | 72-80 | 80-88 | 88-96 | 96-104 | 104-112 | 112-120 | 120-128 | 128-136 | 136-144 | ||||||
18SUS | 2 | 121 | 431 | 480 | 380 | 95 | 9 | 1518 | 59.4 | 38-86 | 13.5 | 95.2 | ||||||||
19SUS | 14 | 199 | 603 | 526 | 114 | 3 | 1459 | 54.8 | 33-80 | 10.8 | 85.8 | |||||||||
18SPS | 19 | 132 | 140 | 152 | 114 | 133 | 175 | 199 | 144 | 129 | 85 | 55 | 16 | 2 | 1495 | 80.7 | 35-139 | 28.7 | 95.4 | |
19SPS | 4 | 57 | 156 | 252 | 247 | 230 | 232 | 158 | 71 | 15 | 4 | 1426 | 72.2 | 32-117 | 19.9 | 92.5 | ||||
全生育期 DSM (d) | 66-76 | 76-86 | 86-96 | 96-106 | 106-116 | 116-126 | 126-136 | 136-146 | 146-156 | 156-166 | 166-176 | 176-186 | 186-196 | 196-206 | ||||||
18SUS | 52 | 254 | 198 | 321 | 224 | 235 | 203 | 30 | 1 | 1518 | 104.8 | 66-149 | 17.0 | 99.1 | ||||||
19SUS | 16 | 177 | 379 | 394 | 260 | 169 | 63 | 1 | 1459 | 100.3 | 66-137 | 13.0 | 97.2 | |||||||
18SPS | 46 | 148 | 44 | 114 | 18 | 122 | 136 | 53 | 121 | 86 | 273 | 189 | 146 | 5 | 1501 | 142.9 | 71-201 | 25.6 | 98.4 | |
19SPS | 2 | 29 | 74 | 121 | 216 | 136 | 82 | 103 | 209 | 206 | 143 | 86 | 30 | 2 | 1439 | 137.2 | 75-198 | 20.7 | 98.2 | |
光温综合反 应敏感性 PTCRS (%) | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 | 100-110 | 110-120 | 120-130 | 130-140 | ||||||
生育前期 DSF | Meana | 78 | 584 | 306 | 91 | 118 | 81 | 83 | 88 | 68 | 20 | 1517 | 32.6 | 0-99 | 69.0 | 95.0 | ||||
生育后期 DFM | Meana | 296 | 234 | 186 | 158 | 164 | 182 | 126 | 92 | 52 | 13 | 1 | 1 | 1505 | 35.2 | 0-113 | 64.0 | 82.6 | ||
全生育期 DSM | Meana | 108 | 82 | 84 | 132 | 122 | 80 | 83 | 92 | 230 | 271 | 178 | 40 | 4 | 1 | 1507 | 66.1 | 0-131 | 46.6 | 90.2 |
表3
生育期相关性状多环境联合方差分析"
变异来源 Source | 生育前期 DSF | 生育后期 DFM | 全生育期 DSM | ||||||
---|---|---|---|---|---|---|---|---|---|
自由度 DF | 均方 MS | F值 F value | 自由度 DF | 均方 MS | F值 F value | 自由度 DF | 均方 MS | F值 F value | |
环境 Env. | 3 | 364996.00 | 1951.42** | 3 | 384088.00 | 989.83** | 3 | 1370239.00 | 3307.50** |
环境内区组 Blk (Env.) | 5 | 61.78 | 10.12** | 5 | 196.98 | 9.05** | 5 | 146.96 | 7.65** |
基因型 Geno | 1518 | 3582.12 | 27.37** | 1517 | 1059.90 | 4.90** | 1517 | 4151.92 | 14.39** |
基因型×环境 Geno×Env. | 4484 | 134.95 | 22.11** | 4377 | 226.48 | 10.41** | 4396 | 302.02 | 15.73** |
误差 Error | 7171 | 6.10 | 6470 | 21.76 | 6575 | 19.20 |
表4
不同生态型大豆生育期均值"
群体 Population | 生态区 Eco-region | 生育前期DSF(d) | 生育后期DFM(d) | 全生育期DSM(d) | |||
---|---|---|---|---|---|---|---|
春播均值a SPS-mean | 夏播均值b SUS-mean | 春播均值 SPS-mean | 夏播均值SUS-mean | 春播均值 SPS-mean | 夏播均值SUS-mean | ||
WA | Ⅳ | 119.9±15.32 | 76.7±8.11 | 54.9±9.34 | 49.5±3.90 | 174.8±9.93 | 126.2±7.38 |
Ⅲ | 97.4±23.97 | 65.4±10.23 | 67.2±18.40 | 49.4±4.34 | 164.3±8.51 | 114.9±8.63 | |
Ⅱ | 70.3±24.37 | 51.9±13.30 | 72.6±17.74 | 50.5±5.16 | 142.7±28.16 | 102.3±11.41 | |
Ⅰ | 47.0±15.10 | 40.3±10.22 | 78.3±18.49 | 52.3±5.10 | 125.2±25.52 | 92.5±10.82 | |
G. soja | 86.1±33.39 | 59.8±16.91 | 67.7±18.33 | 50.3±4.72 | 153.6±26.79 | 110.0±15.51 | |
SA | Ⅳ | 92.8±20.10 | 62.8±9.28 | 81.5±13.28 | 60.7±4.85 | 174.3±15.38 | 123.6±9.39 |
Ⅲ | 72.9±15.50 | 53.7±6.97 | 93.3±11.39 | 62.3±4.37 | 166.0±13.50 | 116.0±7.11 | |
Ⅱ | 50.4±13.13 | 40.6±7.28 | 82.8±14.21 | 62.1±5.71 | 133.1±21.35 | 102.5±9.89 | |
总计c Total | 70.2±24.15 | 51.3±12.31 | 85.4±14.08 | 61.7±5.12 | 155.4±25.51 | 113.0±12.75 | |
SP | Ⅳ | 52.1±9.64 | 41.9±5.77 | 72.1±16.47 | 55.7±5.26 | 124.2±21.69 | 97.6±9.26 |
Ⅲ | 48.5±10.61 | 38.7±6.87 | 63.0±15.05 | 52.8±6.28 | 111.7±22.08 | 91.5±11.28 | |
Ⅰ | 39.4±10.93 | 32.0±7.38 | 61.1±15.36 | 59.3±5.35 | 100.1±23.45 | 90.9±10.53 | |
总计d Total | 45.9±12.00 | 37.0±8.17 | 66.2±16.67 | 57.1±5.80 | 112.0±25.27 | 94.0±10.55 | |
G. max-CHNM | 60.5±23.45 | 45.7±12.91 | 77.8±17.84 | 59.9±5.85 | 138.1±33.11 | 105.5±15.13 | |
O | 65.4±22.82 | 48.8±11.84 | 81.7±16.16 | 60.1±5.99 | 146.8±28.57 | 108.9±14.01 | |
A | 38.7±9.73 | 31.3±6.69 | 60.1±14.71 | 58.8±5.50 | 98.6±21.70 | 89.8±10.14 | |
B | 49.9±16.18 | 40.0±9.30 | 81.6±24.04 | 64.0±8.81 | 131.4±31.84 | 103.8±14.43 | |
C | 86.5±23.73 | 60.6±11.98 | 83.4±14.63 | 61.7±4.63 | 167.4±21.90 | 121.9±12.11 | |
D | 51.6±17.18 | 40.5±10.44 | 86.5±16.93 | 67.2±5.44 | 138.0±28.70 | 107.7±13.48 | |
G. max-WLD | 59.1±23.41 | 44.8±13.15 | 78.3±18.55 | 60.9±6.43 | 137.2±33.40 | 105.5±15.46 | |
总计e Total | 63.9±27.43 | 47.4±15.01 | 76.4±18.95 | 59.0±7.38 | 140.0±32.93 | 106.3±15.56 | |
CK | 70.3 | 48.3 | 98 | 62.8 | 168.3 | 111 |
表5
不同生育阶段光温综合反应敏感性方差分析"
变异来源 Source | 生育前期光温综合反应敏感性 PTCRSDSF | 生育后期光温综合反应敏感性 PTCRSDFM | 全生育期光温综合反应敏感性 PTCRSDSM | ||||||
---|---|---|---|---|---|---|---|---|---|
自由度 DF | 均方 MS | F值 F value | 自由度 DF | 均方 MS | F值 F value | 自由度 DF | 均方 MS | F值 F value | |
年份 Year | 1 | 6829.90 | 390.39** | 1 | 20936.10 | 299.87** | 1 | 1646.88 | 24.39** |
基因型 Geno | 1516 | 339.68 | 19.42** | 1504 | 386.65 | 5.54** | 1506 | 656.92 | 9.73** |
误差 Error | 1461 | 17.50 | 1378 | 69.82 | 1394 | 67.53 |
图1
中国各地理生态型大豆生育阶段(A:生育前期,B:生育后期,C:全生育期)和世界栽培大豆各地理亚群生育阶段(D)光温综合反应敏感性的比较PTCRSDSF:生育前期光温综合反应敏感性;PTCRSDFM:生育后期光温综合反应敏感性;PTCRSDSM:全生育期光温综合反应敏感性。Ⅳ:中南-西南-华南大豆生态区,Ⅲ:长江中下游大豆生态区,Ⅱ:黄淮海大豆生态区,Ⅰ:北方大豆生态区,O:来自中国的起源中心黄淮流域(HCHM)、长江及长江以南地区(SCHM)和台湾(TCHN)的材料。A:来自中国东北(NCHM)、俄罗斯远东(RUFE)和瑞典南部(SSWE)的材料。B:来自朝鲜半岛(KORP)和日本岛(JPAN)的材料。C:来自东南亚(SEAS)、南亚(SASI)和非洲(AFRI)的材料。D:来自北美北部(NNAM)、北美南部(SNAM)和中南美(CSAM)的材料。G. soja:一年生野生大豆,SA:夏秋大豆,SP:春大豆。图中“x”代表亚群平均值,顶部、底部端点代表最大、最小值,外形代表亚群材料的分布情况,图宽即分布频率。下同"
表7
各地理生态型大豆不同生育阶段光温综合反应的比较"
群体 Population | 生态区 Eco-region | 生育前期 DSF | 生育后期 DFM | 全生育期 DSM | ||||||
---|---|---|---|---|---|---|---|---|---|---|
均值 Mean | 变幅 Range | Duncan group | 均值 Mean | 变幅 Range | Duncan group | 均值 Mean | 变幅 Range | Duncan group | ||
WA | Ⅳ | 79.4 | 11.1-94.4 | D | 11.4 | 0.0-62.1 | A | 88.4 | 59.2-106.1 | F |
Ⅲ | 59.6 | 3.9-96.8 | C | 32.5 | 0.0-99.9 | CD | 91.5 | 71.9-105.6 | F | |
Ⅱ | 35.9 | 3.5-80.6 | B | 41.2 | 0.0-88.3 | DE | 75.7 | 0.0-103.5 | E | |
Ⅰ | 17.3 | 0.4-62.9 | A | 47.3 | 0.0-87.1 | E | 62.6 | 1.3-105.3 | D | |
G. soja | 50.1 | 0.4-96.8 | 32.3 | 0.0-99.9 | 80.9 | 0.0-106.1 | ||||
SA | Ⅳ | 56.7 | 8.8-95.9 | C | 39.4 | 0.3-87.3 | CDE | 95.9 | 39.3-131.0 | F |
Ⅲ | 37.4 | 8.5-82.9 | B | 58.3 | 19.3-112.6 | F | 95.3 | 34.2-124.6 | F | |
Ⅱ | 20.8 | 0.4-90.6 | A | 40.4 | 0.0-97.2 | CDE | 60.6 | 0.0-116.2 | CD | |
总计c Total | 36.9 | 0.4-95.9 | 45.3 | 0.0-112.6 | 81.6 | 0.0-131.0 | ||||
SP | Ⅳ | 21.4 | 6.4-82.7 | A | 31.7 | 0.0-86.0 | C | 53.0 | 18.0-104.4 | C |
Ⅲ | 20.7 | 10.8-55.8 | A | 21.2 | 0.0-75.1 | B | 40.8 | 4.7-100.4 | B | |
Ⅰ | 16.2 | 2.3-66.5 | A | 13.4 | 0.0-91.1 | AB | 24.2 | 0.0-111.0 | A | |
总计d Total | 18.9 | 2.3-82.8 | 22.3 | 0.0-91.1 | 38.7 | 0.0-111.0 | ||||
G. max-CHNM | 29.7 | 0.4-95.9 | 36.1 | 0.0-112.6 | 64.5 | 0.0-131.0 | ||||
O | 32.8 | 0.4-95.9 | C | 41.4 | 0.0-112.6 | B | 73.7 | 0.0-131.0 | C | |
A | 16.0 | 2.3-66.5 | A | 12.5 | 0.0-91.1 | A | 23.2 | 0.0-111.0 | A | |
B | 21.3 | 3.1-79.8 | AB | 38.1 | 0.0-90.5 | B | 57.5 | 5.7-110.5 | B | |
C | 49.7 | 10.1-99.4 | D | 39.7 | 0.0-81.6 | B | 85.8 | 10.2-111.4 | D | |
D | 23.2 | 7.3-78.5 | B | 40.4 | 0.0-87.1 | B | 62.6 | 0.0-114.9 | B |
[1] |
ZHANG L X, LIU W, TSEGAW M, XU X, QI Y P, SAPEY E, LIU L P, WU T T, SUN S, HAN T F.Principles and practices of the photo-thermal adaptability improvement in soybean. Journal of Integrative Agriculture, 2020, 19(2): 295-310.
doi: 10.1016/S2095-3119(19)62850-9 |
[2] |
COULTER M W, HAMNER K C.Photoperiodic flowering response of Biloxi soybean in 72-hour cycles. Plant Physiology, 1964, 39(5): 848-856.
doi: 10.1104/pp.39.5.848 |
[3] | 杨永华, 盖钧镒, 马育华. 大豆生育期光温反应特性的遗传. 作物学报, 1994, 20(2): 144-148. |
YANG Y H, GAI J Y, MA Y H.Inheritance of photothermal response characteristics in soybean growth period. Acta Agronomica Sinica, 1994, 20(2): 144-148. (in Chinese) | |
[4] |
SONG Y H, SHIM J S, KINMONTH-SCHULTZ H A, LMAIZUMI T. Photoperiodic flowering: Time measurement mechanisms in leaves. Annual Review of Plant Biology, 2015, 66(1): 441-464.
doi: 10.1146/arplant.2015.66.issue-1 |
[5] |
MAGALÍ N, MANTESE A I, MIRALLES D J, KANTOLIC A G.Soybean fruit development and set at the node level under combined photoperiod and radiation conditions. Journal of Experimental Botany, 2016, 67(1): 1.
doi: 10.1093/jxb/erv451 |
[6] | 李福山. 野生大豆光温反应规律的研究. 植物遗传资源学报, 2011, 12(5): 801-805. |
LI F S.Response regularity of wild soybean to photoperiod and temperature in natural environment. Journal of Plant Genetic Resources, 2011, 12(5): 801-805. (in Chinese) | |
[7] | 盖钧镒, 许东河, 高忠, 岛本义也, 阿部纯, 福士泰史, 北岛俊二. 中国栽培大豆和野生大豆不同生态类型群体间遗传演化关系的研究. 作物学报, 2000, 26(5): 513-520. |
GAI J Y, XU D H, GAO Z, SHIMAMOTO Y, ABE J, FUSHI T S, KITAJIMA S.Studies on the evolutionary relationship among ecotypes of G. max and G. soja in China. Acta Agronomica Sinica, 2000, 26(5): 513-520. (in Chinese) | |
[8] | 范虎, 赵团结, 丁艳来, 邢光南, 盖钧镒. 中国野生大豆群体特征和地理分化的遗传分析. 中国农业科学, 2012, 45(3): 414-425. |
FAN H, ZHAO T J, DING Y L, XING G N, GAI J Y.Genetic analysis of the characteristics and geographic differentiation of Chinese wild soybean population. Scientia Agricultura Sinica, 2012, 45(3): 414-425. (in Chinese) | |
[41] | LÜ S L.Discussion on the origin of cultivated soybean in China. Scientia Agricultura Sinica, 1978, 11(4): 90-94. (in Chinese) |
[9] | 朱贝贝, 孙石, 韩天富, 吴存祥. 中国不同地区野生大豆与栽培大豆生育期长度及结构性状的比较. 大豆科学, 2012, 31(6): 894-898. |
ZHU B B, SUN S, HAN T F, WU C X.Comparison of growth period and its structure traits between wild and cultivated soybeans in China. Soybean Science, 2012, 31(6): 894-898. (in Chinese) | |
[10] | 赵团结, 盖钧镒. 栽培大豆起源与演化研究进展. 中国农业科学, 2004, 37(7): 954-962. |
ZHAO T J, GAI J Y.Research progress on the origin and evolution of cultivated soybean. Scientia Agricultura Sinica, 2004, 37(7): 954-962. (in Chinese) | |
[11] |
CAI Y P, WANG L W, CHEN L, WU T T, LIU L P, SUN SH, WU C X, YAO W W, JIANG B J, YUAN S, HAN T F, HOU W S.Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnology Journal, 2020, 18(1): 298-309.
doi: 10.1111/pbi.v18.1 |
[12] |
WU T T, LI J Y, WU C X, SUN S, MAO T T, JIANG B J, HOU W S, HAN T F.Analysis of the independent-and interactive-photo-thermal effects on soybean flowering. Journal of Integrative Agriculture, 2015, 14(4): 622-632.
doi: 10.1016/S2095-3119(14)60856-X |
[13] |
MAO T T, LI J Y, WEN Z X, WU T T, WU C X, SUN S, JIANG B J, HOU W S, LI W B, SONG Q J, WANG D C, HAN T F.Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. BMC Genomics, 2017, 18(1): 415.
doi: 10.1186/s12864-017-3778-3 |
[14] | 潘铁夫, 张德荣, 张文广, 李长荣. 东北地区大豆气候生态的研究. 吉林农业科学, 1982, 28(2): 17-28. |
PAN T F, ZHANG D R, ZHANG W G, LI C R.Agricultural climatic ecologic factor of soybean in Northeast China. Journal of Jilin Agricultural Sciences, 1982, 28(2): 17-28. (in Chinese) | |
[15] | 潘铁夫, 张德荣, 张文广. 东北地区大豆气候区划的研究. 大豆科学, 1983, 2(1): 1-13. |
PAN T F, ZHANG D R, ZHANG W G.The climatic regionalization of soybean in Northeast China. Soybean Science, 1983, 2(1): 1-13. (in Chinese) | |
[16] | 汪越胜, 盖钧镒. 中国大豆品种光温综合反应与短光照反应的关系. 中国油料作物学报, 2001, 23(2): 40-44. |
WANG Y S, GAI J Y.The relationship between the response to short light and comprehensive responses to photo-temperature condition of soybeans from China. Chinese Journal of Oil Crop Sciences, 2001, 23(2): 40-44. (in Chinese) | |
[17] | 费志宏, 贾贞, 冷建田, 张宝石, 吴存祥. 不同生态类型大豆品种光周期反应的鉴定. 作物杂志, 2009, 24(4): 46-49. |
FEI Z H, JIA Z, LENG J T, ZHANG B S, WU C X.Identification of photoperiodic responses of different soybean ecotypes. Crops, 2009, 24(4): 46-49. (in Chinese) | |
[18] |
费志宏, 吴存祥, 孙洪波, 侯文胜, 张宝石, 韩天富. 以光周期处理与分期播种试验综合鉴定大豆品种的光温反应. 作物学报, 2009, 35(8): 1525-1531.
doi: 10.3724/SP.J.1006.2009.01525 |
FEI Z H, WU C X, SUN H B, HOU W S, ZHANG B S, HAN T F.Identification of photothermal responses in soybean by integrating photoperiod treatments with planting-date experiments. Acta Agronomica Sinica, 2009, 35(8): 1525-1531. (in Chinese)
doi: 10.3724/SP.J.1006.2009.01525 |
|
[19] | GARNER W W, ALLARD H A.Further studies in photoperiodism: the response of the plant to relative length of day and night. Journal of Agricultural Research, 1923, 23: 871-920. |
[20] |
GARNER W W, ALLARD H A.Comparative responses of long-day and short-day plants to relative length of day and night. Plant Physiology, 1933, 8(3): 347-356.
doi: 10.1104/pp.8.3.347 |
[21] |
BORTHWICK H A, PARKER M W.Photoperiodic responses of several varieties of soybeans. Botanical Gazette, 1939, 101(2): 341-365.
doi: 10.1086/334874 |
[22] | UPADHYAY A P, SUMMERFIELD R H, ELLIS R H, ROBERTS R H, QI A.Variation in the durations of the photoperiod-sensitive and photoperiod-insensitive phases of development to flowering among eight maturity isolines of soyabean [Glycine max (L.) Merrill]. Annual Botany, 1994, 74(1): 97-101. |
[23] | 韩天富. 大豆开花后的光周期反应. 大豆科学, 1996, 15(1): 69-73. |
HAN T F.A review on the post-flowering photoperiodic responses in soybean. Soybean Science, 1996, 15(1): 69-73. (in Chinese) | |
[24] | 韩天富, 盖钧镒, 邱家驯. 中国大豆不同生态类型代表品种开花前、开花后光周期反应的比较研究. 大豆科学, 1998, 17(2): 35-40. |
HAN T F, GAI J Y, QIU J X.A comparative study on pre-and post-flowering photoperiod response in various ecotypes of soybeans. Soybean Science, 1998, 17(2): 35-40. (in Chinese) | |
[25] | RAHMAN M M, HAMPTON J G, HILL M J.Soybean development under the cool temperate environment of Canterbury, New Zealand. Journal of New Seeds, 2006, 7(4): 17-36. |
[26] |
KANTOLIC A G, SLAFER G A.Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Annuals of Botany, 2007, 99(5): 925-933.
doi: 10.1093/aob/mcm033 |
[27] | 徐豹, 路琴华. 大豆生态研究: Ⅰ.中国不同纬度野生大豆的光温生态分析. 大豆科学, 1983, 2(3): 155-168. |
XU B, LU Q H.Research on soybean ecology: I. ecological analysis of light and temperature of wild soybeans in different latitudes in China. Soybean Science, 1983, 2(3): 155-168. (in Chinese) | |
[28] | 汪越胜, 马宏惠. 中国大豆地理生态型生育前期光温综合反应. 安徽师范大学学报(自然科学版), 2000, 28(1): 40-42. |
WANG Y S, MA H H.Photothermal comprehensive response of days to flowering of soybean ecotypes of China. Journal of Anhui Normal University (Natural Science Edition), 2000, 28(1): 40-42. (in Chinese) | |
[29] | 汪越胜, 陈冬生, 马宏惠. 中国大豆成熟期光温综合反应与短光照反应间关系. 安徽师范大学学报(自然科学版), 2000, 23(3): 231-233. |
WANG Y S, CHEN D S, MA H H.Relationship between photothermal comprehensive response and response to short photoperiod of Chinese soybeans in days to maturity. Journal of Anhui Normal University (Natural Science Edition), 2000, 23(3): 231-233. (in Chinese) | |
[30] |
SINGH R J, HYMOWITZ T.Soybean genetic resources and crop improvement. Genome, 1999, 42(4): 605-616.
doi: 10.1139/g99-039 |
[31] |
LIU X Q, WU J A, REN H X, QI Y X, LI C Y, CAO J Q, ZHANG X Y, ZHANG Z P, CAI Z Y, GAI J Y.Genetic variation of world soybean maturity date and geographic distribution of maturity groups. Breeding Science, 2017, 67(3): 221-232.
doi: 10.1270/jsbbs.16167 |
[32] | 徐豹. 中国野生大豆(G. soja)研究十年.吉林农业科学, 1989, 55(1): 5-13. |
XU B.Ten years of research on Chinese wild soybeans (G. soja). Journal of Jilin Agricultural Sciences, 1989, 55(1): 5-13. (in Chinese) | |
[33] | 李莹. 野生大豆和生态环境关系的统计分析. 中国油料, 1981, 3(4): 57-60. |
LI Y.Statistical analysis of the relationship between wild soybean and ecological environment. Chinese Journal of Oil Crop Sciences, 1981, 3(4): 57-60. (in Chinese) | |
[34] | 徐树传, 童川拉, 游榕青, 陈孝宽, 危嫩弟. 野生大豆光温反应观察研究. 福建农业科技, 1985, 16(5): 19-20. |
XU S Z, TONG C L, YOU R Q, CHEN X K, WEI N D.Observation and research on the photothermal response of wild soybean. Fujian Agricultural Science and Technology, 1985, 16(5): 19-20. (in Chinese) | |
[35] | 舒世珍, 李福山, 常汝镇. 大豆主要性状演化的初步研究. 作物学报, 1986, 12(4): 255-260. |
SHU S Z, LI F S, CHANG R Z.Preliminary study on the evolution of soybean main traits. Acta Agronomica Sinica, 1986, 12(4): 255-260. (in Chinese) | |
[36] | 徐豹, 路琴华. 不同进化类型大豆花荚形成和脱落的比较研究. 大豆科学, 1988, 7(2): 103-112. |
XU B, LU Q H.Comparative study on the formation and shedding of soybean flower pods with different evolution types. Soybean Science, 1988, 7(2): 103-112. (in Chinese) | |
[37] | 韩天富, 盖钧镒, 陈风云, 邱家驯. 生育期结构不同的大豆品种的光周期反应和农艺性状. 作物学报, 1998, 24(5): 550-557. |
HAN T F, GAI J Y, CHEN F Y, QIU J X.Photoperiod response and agronomic traits of soybean varieties with different growth period structures. Acta Agronomica Sinica, 1998, 24(5): 550-557. (in Chinese) | |
[38] | 常汝镇. 关于栽培大豆起源的研究. 中国油料, 1989, 11(1): 3-9. |
CHANG R Z.Research on the origin of cultivated soybean. Chinese Journal of Oil Crop Sciences, 1989, 11(1): 3-9. (in Chinese) | |
[39] |
WANG L X, GUAN R X, LIU Z X, CHANG R Z, QIU L J.Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Science, 2006, 46(3): 1032-1038.
doi: 10.2135/cropsci2005.0051 |
[40] |
LI Y H, ZHANG C,SMULDERS M J M, LI W, MA Y S, XU Q, CHANG R Z, QIU L J. Analysis of average standardized SSR allele size supports domestication of soybean along the Yellow River. Genetic Resources and Crop Evolution, 2013, 60(2): 763-776.
doi: 10.1007/s10722-012-9873-z |
[41] | 吕世霖. 关于我国栽培大豆原产地问题的探讨. 中国农业科学, 1978, 11(4): 90-94. |
No related articles found! |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 214
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 586
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|