中国农业科学 ›› 2022, Vol. 55 ›› Issue (13): 2509-2525.doi: 10.3864/j.issn.0578-1752.2022.13.003
朱春艳1(),宋佳伟1,白天亮1,王娜1,2,马帅国1,3,普正菲1,董艳1,吕建东1,李杰1,田蓉蓉1,罗成科1,张银霞1,马天利1,李培富1,田蕾1(
)
收稿日期:
2021-10-14
接受日期:
2021-12-14
出版日期:
2022-07-01
发布日期:
2022-07-08
联系方式:
朱春艳,E-mail: 2521767012@qq.com。
基金资助:
ZHU ChunYan1(),SONG JiaWei1,BAI TianLiang1,WANG Na1,2,MA ShuaiGuo1,3,PU ZhengFei1,DONG Yan1,LÜ JianDong1,LI Jie1,TIAN RongRong1,LUO ChengKe1,ZHANG YinXia1,MA TianLi1,LI PeiFu1,TIAN Lei1(
)
Received:
2021-10-14
Accepted:
2021-12-14
Published:
2022-07-01
Online:
2022-07-08
摘要:
【目的】叶绿素荧光可反映盐胁迫下植物光合机构防御机制的受害程度和抗逆性。通过分析盐胁迫对不同耐盐性粳稻种质叶绿素荧光特性的影响,揭示其诱导动力学特征,初步阐明叶绿素荧光相关基因调控粳稻种质苗期耐盐性的机制,为耐盐水稻品种筛选和培育提供理论依据。【方法】以8份耐盐、8份盐敏感粳稻种质为试验材料,于苗期在水培条件下分别测定两组种质0 mmol·L-1和125 mmol·L-1 NaCl胁迫3 d、6 d的叶片叶绿素荧光参数。通过主成分分析筛选关键指标,利用隶属函数和标准差系数赋予权重法综合评价各种质资源耐盐性,获得典型耐(敏)盐种质开展叶绿素荧光相关基因OsHCF222和OsABCI7的表达特异性分析。【结果】与对照(CK,0 mmol·L-1 NaCl 3 d、6 d)相比,盐胁迫(125 mmol·L-1 NaCl 3 d、6 d)可显著降低粳稻种质的最大荧光产量(Fm)、原初光能转化效率(Fv/Fm)。与CK相比,耐盐种质的非光化学荧光淬灭系数(NPQ)和可变荧光的非光化学猝灭系数(qN)在盐胁迫3 d时显著降低,初始荧光产量(Fo)在盐胁迫6 d显著升高;盐敏感种质的光化学淬灭系数(qP)和qN在盐胁迫3 d时显著降低,实际光化学量子产量(Y)、NPQ、表观光合电子传递速率(ETR)在盐胁迫3 d、6 d时极显著降低。盐胁迫下Fm、Fv/Fm、Y、NPQ和ETR与耐盐级别(STS)均呈极显著正相关,且在耐、敏盐种质间差异显著。通过主成分分析将8个叶绿素荧光参数转换为2个主成分,累积贡献率88.018%;结合各因子载荷大小筛选出Fm、Fv/Fm、Y、NPQ和ETR 5个关键指标,可将16份粳稻种质明确划分为耐盐组和盐敏感组两类。以两个主成分的隶属函数结合权重处理并累加计算盐胁迫下叶绿素荧光特性综合评价值D(DCF),并依此获得16份粳稻种质排名。采用Kinetic模式测定盐胁迫和正常生长(CK)条件下耐盐种质Cigalon、Bertone和盐敏感种质新竹8号、幸实的叶绿素荧光诱导动力学曲线。在CK条件下,4份粳稻种质表现为相似的曲线形状,斜率较大,P峰出现时间基本相同;盐胁迫下,随着盐胁迫时间的延长,盐敏感种质的P峰迅速降低,M峰和曲线斜率逐渐变小;耐盐种质仍维持较高的P峰,M峰和曲线斜率与CK相比无明显变化。通过对综合排名第1的耐盐种质Cigalon和排名第16的盐敏感种质幸实NaCl胁迫不同时间叶绿素荧光相关基因OsHCF222和OsABCI7的qPCR分析,结合叶绿素含量、耐盐相关叶绿素荧光参数的动态变化和相关分析,初步明确了OsHCF222和OsABCI7的差异表达与粳稻种质苗期耐盐性的关系。【结论】不同耐盐性粳稻种质的叶绿素荧光参数对盐胁迫的响应不尽相同,Fm、Fv/Fm、Y、NPQ和ETR与水稻苗期耐盐性密切相关;OsHCF222和OsABCI7的表达量直接影响了粳稻种质苗期耐盐性;在耐盐粳稻中,NPQ和Fv/Fm起关键作用,Fm可能在调节盐敏感粳稻耐盐性中发挥重要作用。
朱春艳,宋佳伟,白天亮,王娜,马帅国,普正菲,董艳,吕建东,李杰,田蓉蓉,罗成科,张银霞,马天利,李培富,田蕾. NaCl胁迫对不同耐盐性粳稻种质幼苗叶绿素荧光特性的影响[J]. 中国农业科学, 2022, 55(13): 2509-2525.
ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances[J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
表1
16份不同耐盐性粳稻种质资源名称、来源、综合评价值及耐盐级别"
编号 No. | 种质资源名称 Name of germplasm | 原产地或来源 Origin | 耐盐性 Salt tolerance | DST值 DST value | 耐盐级别 STS |
---|---|---|---|---|---|
1 | Bertone | 葡萄牙 Portugal | 耐盐 ST | 0.810 | 7.5 |
2 | Agostono | 意大利 Italy | 耐盐 ST | 0.716 | 7.2 |
3 | 法国稻 Faguodao | 法国 France | 耐盐 ST | 0.708 | 6.5 |
4 | 湟罗 Huangluo | 俄罗斯 Russia | 耐盐 ST | 0.681 | 6.6 |
5 | 漾濞光壳陆稻Yangbiguangkeludao | 中国云南 Yunnan, China | 耐盐 ST | 0.627 | 6.3 |
6 | Gostima | 阿尔巴尼亚 Aerbaerya | 耐盐 ST | 0.623 | 5.8 |
7 | Cigalon | 法国 France | 耐盐 ST | 0.621 | 6.5 |
8 | Banat2951 | 澳大利亚 Australia | 耐盐 ST | 0.612 | 6.5 |
9 | 幸实 Sachiminori | 日本 Japan | 盐敏感 SS | 0.426 | 2.0 |
10 | 加合1号 Jiahe 1 | 中国浙江 Zhejiang, China | 盐敏感 SS | 0.389 | 2.4 |
11 | 京香2号 Jingxiang 2 | 中国北京 Beijing, China | 盐敏感 SS | 0.361 | 2.3 |
12 | 辽丰8号 Liaofeng 8 | 中国辽宁 Liaoning, China | 盐敏感 SS | 0.347 | 3.1 |
13 | 越光 Koshihikari | 日本 Japan | 盐敏感 SS | 0.312 | 1.8 |
14 | 嘉南8号 Jianan 8 | 中国台湾 Taiwan, China | 盐敏感 SS | 0.261 | 2.2 |
15 | Banat 725 | 澳大利亚 Australia | 盐敏感 SS | 0.252 | 2.6 |
16 | 新竹8号 Xinzhu 8 | 中国台湾 Taiwan, China | 盐敏感 SS | 0.243 | 2.1 |
表3
粳稻种质资源空白对照和盐胁迫下叶绿素荧光参数的分布范围、变异系数、F值和t值"
叶绿素荧光参数 Chlorophyll fluorescence parameters | 盐处理时间 Salt treatment time | 耐盐种质Salt tolerant germplasm | 盐敏感种质Salt sensitive germplasm | ||||||
---|---|---|---|---|---|---|---|---|---|
分布范围 Range | 变异系数 CV (%) | F值 F-value | t值 t-value | 分布范围 Range | 变异系数 CV (%) | F值 F-value | t值 t-value | ||
Fo | 0 mmol·L-1 3d | 610.00-704.00 | 6.12 | 2.93 | 1.53 | 544.00-848.00 | 15.62 | 1.38 | 0.67 |
125 mmol·L-1 3d | 586.00-675.67 | 4.36 | 524.00-711.50 | 9.82 | |||||
0 mmol·L-1 6d | 560.00-716.00 | 9.02 | 0.15 | -2.20* | 614.00-845.00 | 14.69 | 2.68 | 1.43 | |
125 mmol·L-1 6d | 629.33-798.50 | 7.99 | 331.00-882.00 | 28.44 | |||||
Fm | 0 mmol·L-1 3d | 3006.00-3801.00 | 6.75 | 3.07 | 4.35** | 2631.00-3833.00 | 12.79 | 1.41 | 4.86** |
125 mmol·L-1 3d | 3008.33-3177.00 | 2.04 | 1058.00-3016.00 | 31.01 | |||||
0 mmol·L-1 6d | 3344.00-3831.00 | 5.88 | 0.12 | 2.36* | 3350.00-3836.00 | 9.56 | 6.96 | 15.07** | |
125 mmol·L-1 6d | 2949.00-3675.00 | 7.59 | 584.00-1684.00 | 46.93 | |||||
Fv/Fm | 0 mmol·L-1 3d | 0.79-0.82 | 1.23 | 0.90 | 3.63** | 0.76-0.83 | 2.50 | 9.20 | 3.14** |
125 mmol·L-1 3d | 0.77-0.80 | 1.27 | 0.37-0.79 | 21.88 | |||||
0 mmol·L-1 6d | 0.80-0.83 | 1.22 | 7.98 | 2.58* | 0.78-0.83 | 2.47 | 7.28 | 9.18** | |
125 mmol·L-1 6d | 0.74-0.81 | 3.80 | 0.43-0.80 | 21.43 | |||||
Y | 0 mmol·L-1 3d | 0.03-0.08 | 33.33 | 0.13 | 0.52 | 0.02-0.08 | 40.00 | 0.35 | 3.38** |
125 mmol·L-1 3d | 0.04-0.07 | 20.00 | 0.00-0.04 | 50.00 | |||||
0 mmol·L-1 6d | 0.03-0.08 | 40.00 | 0.28 | -0.27 | 0.03-0.08 | 40.00 | 0.30 | 4.24** | |
125 mmol·L-1 6d | 0.03-0.07 | 40.00 | 0.00-0.04 | 50.00 | |||||
qP | 0 mmol·L-1 3d | 0.06-0.92 | 76.19 | 12.07 | 1.86 | 0.06-0.45 | 65.00 | 3.17 | 2.31* |
125 mmol·L-1 3d | 0.12-0.31 | 40.00 | 0.03-0.17 | 66.67 | |||||
0 mmol·L-1 6d | 0.09-0.90 | 108.00 | 0.40 | -0.18 | 0.07-0.21 | 33.33 | 14.57 | -1.20 | |
125 mmol·L-1 6d | 0.11-0.59 | 59.26 | 0.01-0.51 | 95.00 | |||||
qN | 0 mmol·L-1 3d | 0.81-0.99 | 6.45 | 1.02 | 2.87* | 0.82-0.96 | 5.62 | 0.81 | 2.57* |
125 mmol·L-1 3d | 0.79-0.90 | 4.65 | 0.72-0.89 | 7.41 | |||||
0 mmol·L-1 6d | 0.84-0.95 | 4.40 | 0.02 | 0.38 | 0.81-0.95 | 32.14 | 3.97 | 1.31 | |
125 mmol·L-1 6d | 0.81-0.96 | 5.56 | 0.24-0.94 | 29.33 | |||||
NPQ | 0 mmol·L-1 3d | 1.83-3.98 | 23.08 | 3.44 | 3.63** | 1.68-3.55 | 29.46 | 1.50 | 4.05** |
125 mmol·L-1 3d | 1.59-2.60 | 18.98 | 0.47-2.14 | 42.40 | |||||
0 mmol·L-1 6d | 2.25-3.48 | 15.65 | 0.48 | 1.33 | 1.76-3.02 | 20.00 | 0.18 | 6.25** | |
125 mmol·L-1 6d | 1.53-3.49 | 23.55 | 0.11-0.52 | 47.13 | |||||
ETR | 0 mmol·L-13d | 1.48-4.22 | 28.42 | 0.16 | 0.39 | 1.08-3.86 | 35.29 | 0.43 | 3.95** |
125 mmol·L-13d | 1.78-3.66 | 23.25 | 0.10-1.90 | 67.39 | |||||
0 mmol·L-1 6d | 1.58-3.94 | 35.47 | 0.25 | -0.37 | 1.52-4.13 | 36.36 | 4.44 | 5.86** | |
125 mmol·L-1 6d | 1.20-3.66 | 36.55 | 0.16-2.00 | 80.82 |
表4
NaCl胁迫下不同耐盐性粳稻种质资源叶绿素荧光参数的差异显著性分析"
盐处理时间 Salt treatment time | 种质类别 Germplasm category | 初始荧光产量 F0 | 最大荧光产量 Fm | 原初光能转化效率 Fv/Fm | 实际光化学量子产量 Y | 光化学淬灭系数 qP | 可变荧光的非光化学猝灭系数qN | 非光化学荧光淬灭系数NPQ | 表观光合电子传递速率ETR |
---|---|---|---|---|---|---|---|---|---|
0 mmol·L-1 3d | 耐盐 ST | 655.13±40.09a | 3428.75±231.36a | 0.81±0.01a | 0.06±0.02a | 0.42±0.32a | 0.93±0.06a | 3.25±0.75a | 2.85±0.81a |
盐敏感 SS | 650.38±101.61a | 3410.75±436.31a | 0.80±0.02a | 0.05±0.02a | 0.20±0.13a | 0.89±0.05a | 2.58±0.76a | 2.38±0.84a | |
0 mmol·L-1 6d | 耐盐 ST | 641.81±57.89a | 3644.44±214.33a | 0.82±0.01a | 0.05±0.02a | 0.25±0.07a | 0.91±0.04a | 2.94±0.04a | 2.34±0.83a |
盐敏感 SS | 695.00±88.29a | 3683.00±172.73a | 0.81±0.02a | 0.05±0.02a | 0.12±0.02a | 0.86±0.27a | 2.20±0.05b | 2.31±0.84a | |
125 mmol·L-1 3d | 耐盐 ST | 628.93±27.41a | 3060.08±62.55a | 0.79±0.01a | 0.05±0.01a | 0.20±0.08a | 0.86±0.04a | 2.16±0.41a | 2.71±0.63a |
盐敏感 SS | 622.25±61.12a | 2075.87±63.76b | 0.64±0.14b | 0.02±0.01b | 0.09±0.06b | 0.81±0.06a | 1.25±0.53b | 0.92±0.62b | |
125 mmol·L-1 6d | 耐盐 ST | 704.61±56.31a | 3366.42±255.35a | 0.79±0.03a | 0.05±0.02a | 0.27±0.16a | 0.90±0.04a | 2.59±0.61a | 2.49±0.91a |
盐敏感 SS | 598.06±170.10a | 1319.86±404.97b | 0.52±0.08b | 0.02±0.01b | 0.20±0.19a | 0.75±0.22a | 0.87±0.41b | 0.47±0.25b |
表5
盐胁迫下粳稻种质资源叶绿素荧光参数与相对SPAD、苗期耐盐级别的相关系数矩阵"
参数Parameter | Fo | Fm | Fv/Fm | Y | qP | qN | NPQ | ETR | STS | RSPAD |
---|---|---|---|---|---|---|---|---|---|---|
Fo | 1.000 | |||||||||
Fm | 0.524* | 1.000 | ||||||||
Fv/Fm | 0.253 | 0.928** | 1.000 | |||||||
Y | 0.329 | 0.894** | 0.835** | 1.000 | ||||||
qP | 0.391 | 0.224 | 0.033 | 0.402 | 1.000 | |||||
qN | 0.703** | 0.558* | 0.452 | 0.462 | 0.632** | 1.000 | ||||
NPQ | 0.369 | 0.915** | 0.872** | 0.906** | 0.427 | 0.611* | 1.000 | |||
ETR | 0.329 | 0.893** | 0.834** | 1.000** | 0.406 | 0.465 | 0.905** | 1.000 | ||
STS | 0.409 | 0.918** | 0.840** | 0.856** | 0.304 | 0.485 | 0.933** | 0.853** | 1.000 | |
RSPAD | 0.525* | 0.896** | 0.824** | 0.814** | 0.272 | 0.603* | 0.921** | 0.810** | 0.909** | 1.000 |
表6
主成分的特征向量、载荷矩阵、各综合参数的特征值及贡献率"
主成分1 CI1 | 主成分2 CI2 | |||
---|---|---|---|---|
特征向量 Feature vector | 载荷 Load | 特征向量Feature vector | 载荷Load | |
F0 | 0.201 | 0.484 | 0.636 | 0.717 |
Fm | 0.391 | 0.940 | -0.215 | -0.243 |
Fv/Fm | 0.365 | 0.876 | -0.333 | -0.376 |
Y | 0.396 | 0.951 | -0.162 | -0.183 |
qP | 0.276 | 0.664 | 0.483 | 0.545 |
qN | 0.346 | 0.831 | 0.367 | 0.414 |
NPQ | 0.404 | 0.971 | -0.152 | -0.171 |
ETR | 0.396 | 0.951 | -0.144 | -0.162 |
初始特征值 Eigen value | 5.769 | 1.273 | ||
贡献率 Contribution (%) | 72.108 | 15.910 | ||
累积贡献率 Cumulative contribution (%) | 72.108 | 88.018 |
表7
16份粳稻种质资源叶绿素荧光综合指标、权重、隶属函数值、DCF值及排名"
编号 No. | 种质名称 Name of germplasm | 主成分1 PC1 | 主成分2 PC2 | 隶属函数(X1) u( X1 ) | 隶属函数(X2) u( X2 ) | DCF值 DCF value | 排名 Ranking |
---|---|---|---|---|---|---|---|
1 | Bertone | 2.857 | 1.170 | 0.661 | 0.992 | 0.721 | 2 |
2 | Agostono | 2.785 | 0.162 | 0.638 | 0.000 | 0.523 | 4 |
3 | 法国稻 Faguodao | 2.929 | 0.676 | 0.684 | 0.506 | 0.652 | 3 |
4 | 湟罗 Huangluo | 2.532 | 0.272 | 0.557 | 0.108 | 0.476 | 5 |
5 | 漾濞光壳陆稻 Yangbiguangkeludao | 2.059 | 0.632 | 0.407 | 0.462 | 0.417 | 7 |
6 | Gostima | 2.203 | 0.344 | 0.453 | 0.179 | 0.403 | 8 |
7 | Cigalon | 3.393 | 0.602 | 0.831 | 0.433 | 0.759 | 1 |
8 | Banat2951 | 2.272 | 0.518 | 0.475 | 0.350 | 0.452 | 6 |
9 | 幸实 Sachiminori | 0.781 | 0.505 | 0.000 | 0.338 | 0.061 | 16 |
10 | 加合 1 号 Jiahe 1 | 1.567 | 1.002 | 0.250 | 0.826 | 0.355 | 11 |
11 | 京香 2 号 Jingxiang 2 | 1.430 | 0.842 | 0.207 | 0.669 | 0.290 | 13 |
12 | 辽丰 8 号 Liaofeng 8 | 1.610 | 0.355 | 0.264 | 0.190 | 0.251 | 15 |
13 | 越光 Koshihikari | 1.820 | 0.605 | 0.331 | 0.436 | 0.350 | 12 |
14 | 嘉南 8 号 Jianan 8 | 1.840 | 0.838 | 0.337 | 0.665 | 0.396 | 9 |
15 | Banat 725 | 1.756 | 0.789 | 0.310 | 0.617 | 0.366 | 10 |
16 | 新竹8 号 Xinzhu 8 | 1.508 | 0.419 | 0.231 | 0.253 | 0.235 | 14 |
权重Index weight | 0.819 | 0.181 |
图3
不同耐盐性粳稻种质资源盐胁迫不同时间的基因相对表达量、叶绿素含量及叶绿素荧光参数 A、B、C、D、E、F、G及H依次表示125 mmol·L-1 NaCl胁迫0 h、1 h、3 h、6 h、12 h、24 h、48 h、72 h及144 h粳稻种质资源Cigalon和幸实OsHCF222、OsABCI7的相对表达量、总叶绿素含量(mg·g-1)、实际光化学量子产量(Y)、最大荧光产量(Fm)、原初光能转化效率(Fv/Fm)、表观光合电子传递速率(ETR)、非光化学荧光淬灭系数(NPQ)。*表示同一处理时间不同粳稻种质类型间差异显著(P<0.05),**表示同一处理时间不同粳稻种质类型间差异极显著(P<0.01),同一种质不同小写字母表示不同处理时间同一粳稻种质表达量差异显著(P<0.05)"
[1] | 杜学军, 闫彬伟, 许可, 汪顺义, 高子登, 任雪芹, 胡树文, 郧文聚. 盐碱地水盐运移理论及模型研究进展. 土壤通报, 2021, 52(3): 713-721. |
DU X J, YAN B W, XU K, WANG S Y, GAO Z D, REN X Q, HU S W, YUN W J. Research progress on water-salt transport theories and models in saline-alkali soil. Chinese Journal of Soil Science, 2021, 52(3): 713-721. (in Chinese) | |
[2] |
李红宇, 李逸, 司洋, 杜春颖, 周雪松, 刘梦红, 宁洪钰, 叶飘飘. 北方粳稻耐盐碱相关性状主成分分析及综合评价. 核农学报, 2020, 34(8): 1862-1871.
doi: 10.11869/j.issn.100-8551.2020.08.1862 |
LI H Y, LI Y, SI Y, DU C Y, ZHOU X S, LIU M H, NING H Y, YE P P. Principal component analysis and comprehensive evaluation of saline-alkaline tolerance related traits of northern japonica rice. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1862-1871. (in Chinese)
doi: 10.11869/j.issn.100-8551.2020.08.1862 |
|
[3] | 刘雅清. 宁夏河套灌区土壤盐碱化变异特征及其与作物类型的互馈关系[D]. 银川: 宁夏大学, 2019. |
LIU Y Q. Soil salinization variability and its relationship with crop types in Hetao Irrigation District of Ningxia.[D]. Yinchuan: Ningxia University, 2019. (in Chinese) | |
[4] |
冷春旭, 郑福余, 赵北平, 刘海英, 王玉杰. 水稻耐碱性研究进展. 生物技术通报, 2020, 36(11): 103-111.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0263 |
LENG C X, ZHNEG F Y, ZHAO B P, LIU H Y, WANG Y J. Advances on alkaline tolerance of rice. Biotechnology Bulletin, 2020, 36(11): 103-111. (in Chinese)
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0263 |
|
[5] |
KHUSH G S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology, 2005, 59(1): 1-6.
doi: 10.1007/s11103-005-2159-5 |
[6] |
WANKHADE S D, SANZ A. Chronic mild salinity affects source leaves physiology and productivity parameters of rice plants (Oryza sativa L., cv. Taipei 309). Plant and Soil, 2013, 367(1): 663-672.
doi: 10.1007/s11104-012-1503-1 |
[7] |
BIMPONG I K, MANNEH B, SOCK M, DIAW F, AMOAH N K A, ISMAIL A M, GREGOYIO G, SINGH R K, WOPEREIS M. Improving salt tolerance of lowland rice cultivar ‘rassi’ through marker-aided backcross breeding in west Africa. Plant Science, 2016, 242: 288-299.
doi: 10.1016/j.plantsci.2015.09.020 |
[8] |
SHIN Y K, BHANDARI S R, CHO M C, LEE J G. Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Horticulture, Environment, and Biotechnology, 2020, 61(3): 433-443.
doi: 10.1007/s13580-020-00231-z |
[9] | 方怡然, 薛立. 盐胁迫对植物叶绿素荧光影响的研究进展. 生态科学, 2019, 38(3): 225-234. |
FANG Y R, XUE L. Research advances in the effect of salt stress on plant chlorophyll fluorescence. Ecological Science, 2019, 38(3): 225-234. (in Chinese) | |
[10] |
KALAJI H M, RACˇ KOVĂ L, PAGANOVĂ V, SWOCZYNA T, RUSINOWSKI S, SITKO K. Can chlorophyll a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill.?. Environmental and Experimental Botany, 2018, 152: 149-157.
doi: 10.1016/j.envexpbot.2017.11.001 |
[11] |
ZUSH K, MATSUZOE N. Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Scientia Horticulturae, 2017, 219: 216-221.
doi: 10.1016/j.scienta.2017.03.016 |
[12] |
MEHTA P, JAIOO A, MATHUR S, BHAYTI S. Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiology and Biochemistry, 2010, 48: 16-20.
doi: 10.1016/j.plaphy.2009.10.006 |
[13] | 孙文君, 江晓慧, 付媛媛, 申孝军, 高阳, 王兴鹏. 盐分胁迫对棉花幼苗叶片叶绿素荧光参数的影响. 灌溉排水学报, 2021, 40(7): 23-28, 121. |
SUN W J, JIANG X H, FU Y Y, SHEN X J, GAO Y, WANG X P. The effects of salt stress on chlorophyll fluorescence of cotton seedling leaves. Journal of Irrigation and Drainage, 2021, 40(7): 23-28, 121. (in Chinese) | |
[14] | 杨淑萍, 危常州, 梁永超. 盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响. 中国农业科学, 2010, 43(8):1585-1593. |
YANG S P, WEI C Z, LIANG Y C. Effects of NaCl stress on the characteristics of photosynthesis and chlorophyll fluorescence at seedlings stage in different sea island cotton genotypes. Scientia Agricultura Sinica, 2010, 43(8): 1585-1593. (in Chinese) | |
[15] | 孙璐, 周宇飞, 李丰先, 肖木辑, 陶冶, 许文娟, 黄瑞冬. 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012, 45(16): 3265-3272. |
SUN L, ZHOU Y F, LI F X, XIAO M J, TAO Y, XU W J, HUANG R D. Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of sorghum seedlings. Scientia Agricultura Sinica, 2012, 45(16): 3265-3272. (in Chinese) | |
[16] | 刘莉娜, 张卫强, 黄芳芳, 甘先华, 唐成波, 丘鹏基. 盐胁迫对银叶树幼苗光合特性与叶绿素荧光参数的影响. 森林与环境学报, 2019, 39(6): 601-607. |
LIU L N, ZHANG W Q, HUANG F F, GAN X H, TANG C B, QIU P J. Effects of NaCl stress on the photosynthesis and cholorophyll fluorescence of Heritiera littoralis seedlings. Journal of Forest and Environment, 2019, 39(6): 601-607. (in Chinese) | |
[17] |
AKHTER M S, NOREEN S, MAHMOOD S, ATHAR H, ASHRAF M, ALSAHLI A A, AHMAD P. Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. Journal of King Saud University-Science, 2021, 33(1): 101239.
doi: 10.1016/j.jksus.2020.101239 |
[18] |
ZUSHI K, KAJIWARA S, MATSUZOE N. Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. Scientia Horticulturae, 2012, 148: 39-46.
doi: 10.1016/j.scienta.2012.09.022 |
[19] |
DABROWSKI P, BACZEWSKA A H, PAWLUS’ KIEWICZ B, PAUNOV M, ALEXANTROV V, GOLTSEV V, KALAJI M H. Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in perennial ryegrass. Journal of Photochemistry and Photobiology B: Biology, 2016, 157: 22-31.
doi: 10.1016/j.jphotobiol.2016.02.001 |
[20] |
BANKS J M. Chlorophyll fluorescence as a tool to identify drought stress in acer genotypes. Environmental and Experimental Botany, 2018, 155: 118-127.
doi: 10.1016/j.envexpbot.2018.06.022 |
[21] | 胡丰姣, 黄鑫浩, 朱凡, 邹志刚, 刘俊文, 郑芬. 叶绿素荧光动力学技术在胁迫环境下的研究进展. 广西林业科学, 2017, 46(1): 102-106. |
HU F J, HUANG X H, ZHU F, ZOU Z G, LIU J W, ZHENG F. Application of chlorophyll fluorescence analysis in environmental stress. Guangxi Forestry Science, 2017, 46(1): 102-106. (in Chinese) | |
[22] | 胡文海, 闫小红, 李晓红, 曹灶桂. 24-表油菜素内酯对干旱胁迫下辣椒叶片快速叶绿素荧光诱导动力学曲线的影响. 植物研究, 2021, 41(1): 53-59. |
HU W H, YAN X H, LI X H, CAO Z G. Effects of 24-epibrassinolide on the chlorophyll fluorescence transient in leaves of pepper under drought stress. Bulletin of Botanical Research, 2021, 41(1): 53-59. (in Chinese) | |
[23] | 原佳乐, 马超, 冯雅岚, 张均, 杨发强, 李友军. 不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应. 植物生理学报, 2018, 54(6): 1119-1129. |
YUAN J L, MA C, FENG Y L, ZHANG J, YANG F Q, LI Y J. Response of chlorophyll fluorescence transient in leaves of wheats with different drought resistances to drought stresses and rehydration. Plant Physiology Journal, 2018, 54(6): 1119-1129. (in Chinese) | |
[24] | 李旭新, 刘炳响, 郭智涛, 常越霞, 贺磊, 陈芳, 路丙社. NaCl胁迫下黄连木叶片光合特性及快速叶绿素荧光诱导动力学曲线的变化. 应用生态学报, 2013, 24(9): 2479-2484. |
LI X X, LIU B X, GUO Z T, CHANG Y X, HE L, CHEN F, LU B S. Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves. Chinese Journal of Applied Ecology, 2013, 24(9): 2479-2484. (in Chinese) | |
[25] |
HE Y, SHI Y F, ZHANG X B, XU X, WANG H M, LI L J, ZHANG Z H, SHANG H H, WANG Z H, WU J L. The OsABCI7 transporter interacts with OsHCF222 to stabilize the thylakoid membrane in rice. Plant Physiology, 2020, 184(1): 283-299.
doi: 10.1104/pp.20.00445 |
[26] | 马帅国, 田蓉蓉, 胡慧, 吕建东, 田蕾, 罗成科, 张银霞, 李培富. 粳稻种质资源苗期耐盐性综合评价与筛选. 植物遗传资源学报, 2020, 21(5): 1089-1101. |
MA S G, TIAN R R, HU H, LÜ J D, TIAN L, LUO C K, ZHANG Y X, LI P F. Comprehensive evaluation and selection of rice(Oryza sativa japonica)germplasm for saline tolerance at seedling stage. Journal of Plant Genetic Resources, 2020, 21(5): 1089-1101. (in Chinese) | |
[27] | 王娜, 陈亚萍, 田蕾, 张得雯, 王瑞智, 杨苗, 李培富. 粳稻种质资源苗期根系形态特征与耐盐性相关分析. 广东农业科学, 2015, 42(10): 1-10. |
WANG N, CHEN Y P, TIAN L, ZHANG D W, WANG R Z, YANG M, LI P F. Correlation between root morphological characteristics of japonica rice germplasm and salt tolerance at seedling stage. Guangdong Agricultural Sciences, 2015, 42(10): 1-10. (in Chinese) | |
[28] |
TIAN L, TAN L B, LIU F X, CAI H W, SUN C Q. Identification of quantitative trait loci associated with salt tolerance at seedling stage from Oryza rufipogon. Journal of Genetics and Genomics, 2011, 38(12): 593-601.
doi: 10.1016/j.jgg.2011.11.005 |
[29] | 谢海慧, 龚秦文, 吴承祯, 林勇明, 李键, 陈灿, 范海兰, 洪伟. 氮、硫沉降对尾巨桉和杉木幼苗光合特性的影响. 应用与环境生物学报, 2015, 21(3): 555-562. |
XIE H H, GONG Q W, WU C Z, LIN Y M, LI J, CHEN C, FAN H L, HONG W. Effects of nitrogen and sulfur deposition on photosynthetic characteristics of Eucalyptus urophylla × Eucalyptus grandis and Cunninghamia lanceolata seedlings under simulated experimental condition. Chinese Journal of Applied and Environmental Biology. 2015, 21(3): 555-562. (in Chinese) | |
[30] | 田蕾, 王彬, 张雪艳, 王娜, 普正菲, 董艳, 许兴. 脱硫石膏改良盐碱土对水稻秧苗素质、根系特征及质膜透性的影响. 广东农业科学, 2014, 41(21): 1-6. |
TIAN L, WANG B, ZHANG X Y, WANG N, PU Z F, DONG Y, XU X. Effects of saline-alkail soil improved by desulfurized gypsum on seedling quality, root features and membrane permeability of rice. Guangdong Agricultural Sciences, 2014, 41(21): 1-6. (in Chinese) | |
[31] | 李合生. 现代植物生理学. 3版. 北京: 高等教育出版社, 2012. |
LI H S. Modern Plant Physiology. 3rd ed. Beijing: Higher Education Press, 2012. (in Chinese) | |
[32] |
胡慧, 马帅国, 田蕾, 吕建东, 王彬, 王娜, 普正菲, 董艳. 脱硫石膏改良盐碱土对水稻叶绿素荧光特性的影响. 核农学报, 2019, 33(12): 2439-2450.
doi: 10.11869/j.issn.100-8551.2019.12.2439 |
HU H, MA S G, TIAN L, LÜ J D, WANG B, WANG N, PU Z F, DONG Y. Effects of saline-alkali soil improved by desulfurized gypsum on chlorophyll fluorescence characteristics of rice. Journal of Nuclear Agricultural Sciences, 2019, 33(12): 2439-2450. (in Chinese)
doi: 10.11869/j.issn.100-8551.2019.12.2439 |
|
[33] | 唐玲, 李倩中, 荣立苹, 李淑顺. 盐胁迫对鸡爪槭幼苗生长及其叶绿素荧光参数的影响. 西北植物学报, 2015, 35(10): 2050-2055. |
TANG L, LI Q Z, RONG L P, LI S S. Effects of salt stress on the growth and leaf chlorophyll fluorescence in Acer palmatum seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(10): 2050-2055. (in Chinese) | |
[34] | 佘汉基, 张潮, 薛立, 邝雷, 郑欣颖, 谢腾芳. 盐胁迫对4种园林植物荧光特性的影响. 生态科学, 2018, 37(5): 87-93. |
SHE H J, ZHANG C, XUE L, KUANG L, ZHENG X Y, XIE T F. Effects of salt stress on chlorophyll fluorescence parameters of seedlings of four garden plant species. Ecological Science, 2018, 37(5): 87-93. (in Chinese) | |
[35] | 刘晓龙, 徐晨, 季平, 李前, 杨洪涛, 武志海, 王洪君. 盐胁迫下水稻叶绿素荧光特性与离子积累的相关性分析. 分子植物育种, 2021, 19(3): 972-982. |
LIU X L, XU C, JI P, LI Q, YANG H T, WU Z H, WANG H J. Correlation analysis of chlorophyll fluorescence characteristics of leaves and ions accumulation in rice under salt stress. Molecular Plant Breeding, 2021, 19(3): 972-982. (in Chinese) | |
[36] | 刘晓龙, 徐晨, 徐克章, 崔菁菁, 安久海, 凌凤楼, 张治安, 武志海. 盐胁迫对水稻叶片光合作用和叶绿素荧光特性的影响. 作物杂志, 2014(2): 88-92. |
LIU X L, XU C, XU K Z, CUI J J, AN J H, LING F L, ZHANG Z A, WU Z H. Effects on characteristics of photosynthesis and chlorophyll fluorescence of rice under salt stress. Crops, 2014(2): 88-92. (in Chinese) | |
[37] |
SINGH D P, SARKAR R K. Distinction and characterisation of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. Functional Plant Biology, 2014, 41(7): 727-736.
doi: 10.1071/FP13229 |
[38] |
王文林, 万寅婧, 刘波, 王国祥, 唐晓燕, 陈昕, 梁斌, 庄巍. 土壤逐渐干旱对菖蒲生长及光合荧光特性的影响. 生态学报, 2013, 33(13): 3933-3940.
doi: 10.5846/stxb201210301506 |
WANG W L, WAN Y J, LIU B, WANG G X, TANG X Y, CHEN X, LIANG B, ZHUANG W. Influence of soil gradual drought stress on Acorus calamus growth and photosynthetic fluorescence characteristics. Acta Ecologica Sinica, 2013, 33(13): 3933-3940. (in Chinese)
doi: 10.5846/stxb201210301506 |
|
[39] | 卢广超, 许建新, 薛立, 张柔, 吴彩琼, 邵怡若. 低温胁迫对4种幼苗的叶绿素荧光特性的影响. 中南林业科技大学学报, 2014, 33(2): 44-49. |
LU G C, XU J X, XUE L, ZHANG R, WU C Q, SHAO Y R. Effects of low temperature stress on chlorophyll fluorescence characteristics of four types of tree species seedlings. Journal of Central South University of Forestry & Technology, 2014, 33(2): 44-49. (in Chinese) | |
[40] |
MORADI F, ISMAIL A M. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany, 2007, 99(6): 1161-1173.
doi: 10.1093/aob/mcm052 |
[41] |
WRIGHT H, DELONG J, LADA R, PRANGE R. The relationship between water status and chlorophyll a fluorescence in grapes (Vitis spp.). Postharvest Biology and Technology, 2009, 51(2): 193-199.
doi: 10.1016/j.postharvbio.2008.07.004 |
[42] |
SHIN Y K, BHANDARI S R, CHO M C. Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Horticulture, Environment, and Biotechnology, 2020, 61(3): 433-443.
doi: 10.1007/s13580-020-00231-z |
[43] | 赵阳阳, 曾志斌, 王永淇. 盐胁迫对姜科8种植物叶绿素荧光参数的影响. 热带农业科学, 2018, 38(9): 18-23, 34. |
ZHAO Y Y, ZENG Z B, WANG Y Q. Effects of salt stress on chlorophyll fluorescence coefficient of eight zingiberaceae plants. Chinese Journal of Tropical Agriculture, 2018, 38(9): 18-23, 34. (in Chinese) | |
[44] |
YAMANE K, KAWASAKI M, TANIGUCHI M, MIYAKE H. Correlation between chloroplast ultrastructure and chlorophyll fluorescence characteristics in the leaves of rice (Oryza sativa L.) grown under salinity. Plant Production Science, 2008, 11(1): 139-145.
doi: 10.1626/pps.11.139 |
[45] | 杨程, 杜思梦, 张德奇, 李向东, 时艳华, 邵运辉, 王汉芳, 方保停. 基于叶绿素荧光参数的小麦叶片叶绿素相对含量估算方法. 应用生态学报, 2021, 32(1):175-181. |
YANG C, DU S M, ZHANG D Q, LI X D, SHI Y H, SHAO Y H, WANG H F, FANG B T. Method for estimating relative chlorophyll content in wheat leaves based on chlorophyll fluorescence parameters. Chinese Journal of Applied Ecology, 2021, 32(1): 175-181. (in Chinese) | |
[46] | 刘文娟, 常丽娟, 岳丽杰, 宋君, 张富丽, 王东, 吴佳蔚, 郭灵安, 雷绍荣. 两个玉米品种维管束鞘叶绿体的非光化学淬灭对干旱胁迫的响应. 中国农业科学, 2020, 53(8):1532-1544. |
LIU W J, CHANG L J, YUE L J, SONG J, ZHANG F L, WANG D, WU J W, GUO L A, LEI S R. Response of non-photochemical quenching in bundle sheath chloroplasts of two maize hybrids to drought stress. Scientia Agricultura Sinica, 2020, 53(8):1532-1544. (in Chinese) |
[1] | 王程泽, 张燕, 付伟, 贾京哲, 董金皋, 申珅, 郝志敏. 玉米ACO基因家族生物信息学及表达模式分析[J]. 中国农业科学, 2024, 57(7): 1308-1318. |
[2] | 朱天赐, 马天封, 柯健, 朱铁忠, 何海兵, 尤翠翠, 吴晨阳, 王冠军, 武立权. 长江下游地区味优高产协同粳稻的品种特性[J]. 中国农业科学, 2024, 57(4): 820-830. |
[3] | 朱大伟, 郑欣, 余静, 牟仁祥, 陈铭学, 邵雅芳, 章林平. 中国高食味北方粳稻与南方半糯粳稻品种理化特性及食味品质的差异分析[J]. 中国农业科学, 2024, 57(3): 469-483. |
[4] | 裴书瑶, 曹红霞, 张泽宇, 赵方洋, 李志军. 盆栽番茄对NaCl和Na2SO4微咸水灌溉的生理响应[J]. 中国农业科学, 2024, 57(3): 570-583. |
[5] | 赵婕, 赵龙缘, 潘凝辉, 管丽蓉, 杜云龙, 李成云, 王云月, 谢勇. 水解酶基因BGIOSGA023826在稻瘟菌侵染过程中的抗病表型效应[J]. 中国农业科学, 2024, 57(23): 4607-4618. |
[6] | 邵嘉朱, 吕雯, 廖鑫琳, 袁歆瑜, 宋振, 蒋冬花. 大豆根际促生菌的分离、鉴定及其耐盐促生作用[J]. 中国农业科学, 2024, 57(21): 4248-4263. |
[7] | 代瑛姿, 郭宏扬, 杨志峰, 王宪璞, 许丽丽. 葡萄转录因子VvERF2耐盐功能鉴定[J]. 中国农业科学, 2024, 57(2): 336-348. |
[8] | 尹军良, 李婧怡, 韩硕, 杨培华, 马佳伟, 刘奕清, 胡海骏, 朱永兴. 生姜NHX基因家族成员鉴定及其在硅缓解盐胁迫中的表达特征[J]. 中国农业科学, 2024, 57(19): 3848-3869. |
[9] | 范鹏, 杨天乐, 朱少龙, 王志杰, 张明月, 魏海燕, 刘国栋. 长三角地区半糯粳稻外观品质的评价[J]. 中国农业科学, 2024, 57(16): 3105-3115. |
[10] | 张英, 原青云, 任芳, 胡国君, 范旭东, 董雅凤. 葡萄浆果内坏死病毒RT-qPCR检测技术建立及其在葡萄砧木中的时空分布规律[J]. 中国农业科学, 2024, 57(14): 2771-2780. |
[11] | 张小琴, 尹昌, 李政, 唐旭, 李艳, 吴春艳. 长期施肥对水稻土典型氨氧化菌和全程氨氧化菌种群活性和丰度的影响[J]. 中国农业科学, 2024, 57(14): 2803-2814. |
[12] | 徐亚楠, 陶怡, 叶淑珍, 徐春梅, 陈松, 褚光, 王丹英, 欧阳由男. 寒地粳稻在长江下游地区作双季早粳稻产量和品质表现分析[J]. 中国农业科学, 2024, 57(11): 2114-2124. |
[13] | 李慧, 张雨峰, 李晓刚, 王中华, 蔺经, 常有宏. 全基因组DNA甲基化和转录组联合分析鉴定杜梨耐盐相关转录因子[J]. 中国农业科学, 2023, 56(7): 1377-1390. |
[14] | 徐海, 李秀坤, 芦佳浩, 姜恺, 马玥, 徐正进, 徐铨. 籼型血缘渗入对北方粳稻产量和品质的影响[J]. 中国农业科学, 2023, 56(22): 4359-4370. |
[15] | 李美璇, 张向昆, 王莉, 乔月莲, 师校欣, 杜国强. 沙地葡萄茎痘相关病毒在‘阳光玫瑰’葡萄树不同物候期和不同部位的变化规律[J]. 中国农业科学, 2023, 56(21): 4234-4244. |
|