[1] |
沈年伟, 钱前, 张光恒. 水稻卷叶性状的研究进展及在育种中的应用. 分子植物育种, 2009,7(5):852-860.
|
|
SHEN N W, QIAN Q, ZHANG G H. Research progress on rice rolled leaf and it’s application in breeding program. Molecular Plant Breeding, 2009,7(5):852-860. (in Chinese)
|
[2] |
徐静, 王莉, 钱前, 张光恒. 水稻叶片形态建成分子调控机制研究进展. 作物学报, 2013,39(5):767-774.
doi: 10.3724/SP.J.1006.2013.00767
|
|
XU J, WANG L, QIAN Q, ZHANG G H. Research advance in molecule regulation mechanism of leaf morphogenesis in rice (Oryza sativa L.). Acta Agronomica Sinica, 2013,39(5):767-774. (in Chinese)
doi: 10.3724/SP.J.1006.2013.00767
|
[3] |
郎有忠, 张祖建, 顾兴友, 杨建昌, 朱庆森. 水稻卷叶性状生理生态效应的研究: Ⅱ. 光合特性、物质生产与产量形成. 作物学报, 2004,30(9):883-887.
|
|
LANG Y Z, ZHANG Z J, GU X Y, YANG J C, ZHU Q S. Physiological and ecological effects of crimpy leaf character in rice (Oryza sativa L.): Ⅱ. Photosynthetic character, dry mass production and yield forming. Acta Agronomica Sinica, 2004,30(9):883-887. (in Chinese)
|
[4] |
周亭亭, 饶玉春, 任德勇. 水稻卷叶细胞学与分子机制研究进展. 植物学报, 2018,53(6):848-855.
doi: 10.11983/CBB17236
|
|
ZHOU T T, RAO Y C, REN D Y. Research advances in the cytological and molecular mechanisms of leaf rolling in rice. Chinese Bulletin of Botany, 2018,53(6):848-855. (in Chinese)
doi: 10.11983/CBB17236
|
[5] |
HU J, ZHU L, ZENG D, GAO Z, GUO L, FANG Y, ZHANG G, DONG G, YAN M, LIU J, QIAN Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Molecular Biology, 2010,73(3):283-292.
pmid: 20155303
|
[6] |
LI L, SHI Z, LI L, SHEN G, WANG X, AN L, ZHANG J. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Molecular Plant, 2010,3(5):807-817.
pmid: 20494951
|
[7] |
FANG L, ZHAO F, CONG Y, SANG X, DU Q, WANG D, LI Y, LING Y, YANG Z, HE G. Rolling‐leaf14 is a 2OG‐Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnology Journal, 2012,10(5):524-532.
pmid: 22329407
|
[8] |
ZOU L, SUN X, ZHANG Z, LIU P, WU J, TIAN C, QIU J, LU T. Leaf rolling controlled by the homeodomain leucine zipper class IV Gene Roc5 in rice1. Plant Physiology, 2011,156(3):1589-1602.
doi: 10.1104/pp.111.176016
|
[9] |
XU Y, WANG Y H, LONG Q Z, HUANG J X, WANG Y L, ZHOU K N, ZHENG M, SUN J, CHEN H, CHEN A H, JIANG L, WANG C M, WAN J M. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta, 2014,239(4):803-816.
pmid: 24385091
|
[10] |
HIBARA K, OBARA M, HAYASHIDA E, ABE M, ISHIMARU T, SATOH H, ITOH J, NAGATO Y. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Developmental Biology, 2009,334(2):345-354.
doi: 10.1016/j.ydbio.2009.07.042
pmid: 19665012
|
[11] |
李聪. OsLBD3-7基因过表达导致水稻叶片近轴卷曲[D]. 北京: 中国农业科学院, 2016.
|
|
LI C. OsLBD3-7 overexpression induced adaxually rolled leaves in rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
|
[12] |
FUJINO K, MATSUDA Y, OZAWA K, NISHIMURA T, KOSHIBA T, FRAAIJE M W, SEKIGUCHI H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Molecular Genetics and Genomics, 2008,279(5):499-507.
doi: 10.1007/s00438-008-0328-3
pmid: 18293011
|
[13] |
ZHANG G, XU Q, ZHU X, QIAN Q, XUE H. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. The Plant Cell, 2009,21(3):719-735.
pmid: 19304938
|
[14] |
XIANG J, ZHANG G, QIAN Q, XUE H. SEMI-ROLLED LEAF1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells1. Plant Physiology, 2012,159(4):1488-1500.
doi: 10.1104/pp.112.199968
|
[15] |
GAO L L, XUE H W. Global analysis of expression profiles of rice receptor-like kinase genes. Molecular Plant, 2012,5(1):143-153.
pmid: 21765177
|
[16] |
VIJ S, GIRI J, DANSANA P K, KAPOOR S, TYAGI A K. The Receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. Molecular Plant, 2008,1(5):732-750.
pmid: 19825577
|
[17] |
YAMAGUCHI K, YAMADA K, ISHIKAWA K, YOSHIMURA S, HAYASHI N, UCHIHA-SHI K, ISHIHAMA N, KISHI-KABOSHI M, TAKAHASHI A, TSUGE S, OCHIAI H, TADA Y, SHIMAMOTO K, YOSHIOKA H, KAWASAKI T. A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe, 2013,13(3):347-357.
doi: 10.1016/j.chom.2013.02.007
|
[18] |
WANG J, WU G, PENG C, ZHOU X, LI W, HE M, WANG J, YIN J, MA W, MA B, WANG Y, CHEN W, QIN P, LI S, CHEN X. The receptor-like cytoplasmic kinase OsRLCK102 regulates XA21-mediated immunity and plant development in rice. Plant Molecular Biology Reporter, 2016,34(3):628-637.
doi: 10.1007/s11105-015-0951-1
|
[19] |
ZHOU X, WANG J, PENG C, ZHU X, YIN J, LI W, HE M, WANG J, CHERN M, YUAN C, WU W, MA W, QIN P, MA B, WU X, MA W, LI S, RONALD P, CHEN X. Four receptor-like cytoplasmic kinases regulate development and immunity in rice. Plant Cell Environment, 2016,39(6):1381-1392.
doi: 10.1111/pce.12696
|
[20] |
黄晓群, 赵海新, 董春林, 孙业盈, 王平荣, 邓晓建. 水稻叶绿素合成缺陷突变体及其生物学研究进展. 西北植物学报, 2005(8):1685-1691.
|
|
HUANG X Q, ZHAO H X, DONG C L, SUN Y Y, WANG P R, DENG X J. Chlorophyll-deficit rice mutants and their research advances in biology. Acta Botanica Boreali-Occidentalia Sinica, 2005(8):1685-1691. (in Chinese)
|
[21] |
MOLENDIJK A J, RUPERTI B, SINGH M K, DOVZHENKO A, DITENGOU F A, MILIA M, WESTPHAL L, ROSAHL S, SOELLICK T, UHRIG J, WEINGARTEN L, HUBER M, PALME K. A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. The Plant Journal, 2008,53(6):909-923.
doi: 10.1111/j.1365-313X.2007.03384.x
pmid: 18088316
|
[22] |
DORJGOTOV D, JURCA M E, FODOR-DUNAI C, SZUCS A, OTVOS K, KLEMENT E, BIRO J, FEHER A. Plant Rho-type(Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro. FEBS Letters, 2009,583(7):1175-1182.
pmid: 19285078
|
[23] |
MA Y, ZHAO Y, SHANGGUAN X, SHI S, ZENG Y, WU Y, CHEN R, YOU A, ZHU L, DU B, HE G. Overexpression of OsRRK1 changes leaf morphology and defense to insect in rice. Frontiers in Plant Science, 2017,8(8):1783.
doi: 10.3389/fpls.2017.01783
|
[24] |
TOKI S, HARA N, ONO K, ONODERA H, TAGIRI A, OKA S, TANAKA H. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. The Plant Journal, 2006,47(6):969-976.
pmid: 16961734
|
[25] |
HIEI Y, OHTA S, KOMARI T, KUMASHIRO T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 1994,6(2):271-282.
pmid: 7920717
|
[26] |
杨浩萌, 薛哲勇, 赵乐, 漆小泉, 黄芳. 集胞藻Slr1515基因提高转基因水稻植株剑叶长度及叶绿素含量. 植物学报, 2013,48(5):489-497.
doi: 10.3724/SP.J.1259.2013.00489
|
|
YANG H M, XUE Z Y, ZHAO L, QI X Q, HUANG F. Increased chlorophyll content and flag leaf length in transgenic rice expressing Slr1515 of Synechocystis sp. PCC 6803. Chinese Bulletin of Botany, 2013,48(5):489-497. (in Chinese)
doi: 10.3724/SP.J.1259.2013.00489
|
[27] |
CHEN R, ZHAO X, SHAO Z, WEI Z, WANG Y, ZHU L, ZHAO J, SUN M, HE R, HE G. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. The Plant Cell, 2007,19(3):1-15.
doi: 10.1105/tpc.107.190180
|
[28] |
王育花, 赵森, 陈芬, 肖国樱. 利用实时荧光定量PCR法检测转基因水稻外源基因拷贝数的研究. 生命科学研究, 2007(4):301-305.
|
|
WANG Y H, ZHAO S, CHEN F, XIAO G Y. Estimation of the copy number of exogenous gene in transgenic rice by real-time fluor escence quantitative PCR. Life Science Research, 2007(4):301-305. (in Chinese)
|
[29] |
刘微, 王树涛, 陈英旭, 吴伟祥. 转Bt(Cry1Ab)基因对水稻光合特性及光合产物积累的影响. 中国农业科学, 2011,44(3):627-633.
|
|
LIU W, WANG S T, CHEN Y X, WU W X. Effect of Cry1Ab Gene on photosynthetic characteristics and photosynthate accumulation of rice. Scientia Agricultura Sinica, 2011,44(3):627-633. (in Chinese)
|
[30] |
童平, 杨世民, 马均, 吴合洲, 傅泰露, 李敏, 王明田. 不同水稻品种在不同光照条件下的光合特性及干物质积累. 应用生态学报, 2008(3):505-511.
|
|
TONG P, YANG S M, MA J, WU H Z, FU T L, LI M, WANG M T. Photosynthetic characteristics and dry matter accumulation of hybrid rice varieties under different light conditions. Chinese Journal of Applied Ecology, 2008(3):505-511. (in Chinese)
|
[31] |
朱寒, 时元智, 洪大林, 程一帆, 王力. 水肥调控对水稻叶片SPAD值与产量的影响. 中国农村水利水电, 2019(11):50-53, 65.
|
|
ZHU H, SHI Y Z, HONG D L, CHENG Y F, WANG L. Effects of water and fertilizer application on leaf SPAD values and yield of rice. China Rural Water and Hydropower, 2019(11):50-53, 65. (in Chinese)
|
[32] |
叶子飘, 闫小红, 段世华. 高产水稻剑叶的叶绿素含量、捕光色素分子的内禀特性与饱和光强关系的研究. 井冈山大学学报(自然科学版), 2015,36(2):25-32.
|
|
YE Z P, YAN X H, DUAN S H. Investion on the relationship between saturation irradiance and chlorohyll contents of flag leaves and intrinsic characteristics of light-harvesting pigment molecules in high-yielding rice. Journal of Jinggangshan University (Natural Science), 2015,36(2):25-32. (in Chinese)
|
[33] |
范淑秀, 陈温福. 超高产水稻品种叶绿素变化规律研究初报. 沈阳农业大学学报, 2005(1):14-17.
|
|
FAN S X, CHEN W F. Changes of chlorophyll content of high- yielding rice. Journal of Shenyang Agricultural University, 2005(1):14-17. (in Chinese)
|
[34] |
LAFITTE H R, PRICE A H, COURTOIS B. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theoretical and Applied Genetics, 2004,109(6):1237-1246.
pmid: 15490102
|
[35] |
李合生. 现代植物生理学. 北京: 高等教育出版社, 2012.
|
|
LI H S. Modern Plant Physiology. Beijing: Higher Education Press, 2012. (in Chinese)
|