中国农业科学 ›› 2021, Vol. 54 ›› Issue (21): 4539-4551.doi: 10.3864/j.issn.0578-1752.2021.21.005
收稿日期:
2021-01-25
接受日期:
2021-04-09
出版日期:
2021-11-01
发布日期:
2021-11-09
联系方式:
联系方式:郑伟,E-mail: zwalhx@126.com。
基金资助:
ZHENG Wei(),SHI Zheng,LONG Mei,LIAO YunCheng()
Received:
2021-01-25
Accepted:
2021-04-09
Published:
2021-11-01
Online:
2021-11-09
摘要:
【目的】叶色突变体是研究叶绿素合成、叶绿体发育和光合作用的理想材料,探索小麦黄绿叶突变体的光合生理特性,旨在阐明其光合作用调控机理,为小麦黄绿叶突变体的进一步利用奠定基础。【方法】以野生型冀麦5265和突变体冀麦5265yg为试验材料,对叶色表型进行观察,采用分光光度计和试剂盒法测定色素含量和酶活性,并利用Li-6400便携式光合仪和PAM100叶绿素荧光仪进行光合气体交换参数和叶绿素荧光参数测定。【结果】表型观察和色素含量结果表明,突变体苗期叶片表现为黄绿色,抽穗后叶片逐渐转变为淡绿色。遮阴处理可以使叶片颜色部分复绿,但比野生型略浅,属于光诱导转绿型突变体。突变体叶绿素a和叶绿素b含量显著低于野生型,叶绿素a/b的比值升高,为典型的叶绿素缺乏型突变体;光响应曲线和CO2响应曲线显示,突变体的表观量子效率(AQY)、光饱和点(LSP)、最大净光合速率(Pn-max)、光补偿点(LCP)、暗呼吸速率(Rd)、羧化效率(CE)和饱和CO2浓度(I-sat)显著高于野生型,说明突变体叶片的光合机构稳定,强光下光合速率更高;光合气体交换参数和叶绿素荧光动力学参数表明,突变体的净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、光化学量子效率(Fv/Fm)、实际光化学效率(ΦPSII)和光化学淬灭系数(qP)显著高于野生型,说明其具有较强的光能转化和CO2固定能力;突变体的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性均高于野生型,丙二醛(MDA)含量下降,可溶性糖和可溶性蛋白含量升高,说明抗氧化酶系统通过清除氧自由基降低了氧化损伤,突变体叶片细胞膜损害减轻,抗逆性增强;突变体的核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)活性显著低于野生型,磷酸烯醇式丙酮酸羧化酶(PEPC)活性显著高于野生型,推测C4 途径光合酶PEPC活性的升高可能是突变体具有较高净光合速率的原因之一。花后遮阴以及外源喷施抗坏血酸AsA和二硫苏糖醇DTT处理表明,突变体对光强变化更敏感、叶片内AsA含量及叶黄素循环效率更高。【结论】黄绿叶突变体冀麦5265yg叶片气孔导度明显改善、热耗散降低、C4途径光合酶活性升高,是其光合速率提高的主要原因。该结果为小麦叶色突变体高光合特性的分子调控机制研究奠定基础。
郑伟, 师筝, 龙美, 廖允成. 黄绿叶突变体冀麦5265yg的光合生理特性分析[J]. 中国农业科学, 2021, 54(21): 4539-4551.
ZHENG Wei, SHI Zheng, LONG Mei, LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg[J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
表1
冀麦5265和冀麦5265yg叶片光合色素含量测定(鲜重)"
材料 Material | 叶绿素 a Chl a | 叶绿素 b Chl b | 类胡萝卜素 Car | 叶绿素a/b Chl (a/b) | 总叶绿素 Total Chl | 胡萝卜素/叶绿素 Car/Chl ratio |
---|---|---|---|---|---|---|
冀麦5265 Jimai5265 | 1.06±0.20a | 0.31±0.05a | 0.23±0.03a | 3.44±0.08b | 1.36±0.25a | 0.17±0.01b |
冀麦5265yg Jimai5265yg | 0.65±0.07b | 0.13±0.01b | 0.20±0.02a | 5.05±0.36a | 0.78±0.09b | 0.25±0.06a |
表2
开花期冀麦5265和冀麦5265yg旗叶的特征参数"
特征参数值 Parameter | 材料 Material | |
---|---|---|
冀麦5265 Jimai5265 | 冀麦5265yg Jimai5265yg | |
表观量子效率 AQY (µmol·µmol-1) | 0.0669±0.009b | 0.0719±0.006a |
光饱和点 LSP (µmol·m-2·s-1) | 1619±35.69b | 1873±56.32a |
光补偿点 LCP (µmol·m-2·s-1) | 37.65±4.19b | 56.84±5.63a |
最大净光合速率 Pn-max (µmol·m-2·s-1) | 29.47±1.34b | 45.96±2.28a |
暗呼吸速率 Rd (µmol·m-2·s-1) | 2.44±0.74b | 3.82±0.59a |
羧化效率 CE (mol·m-2·s-1) | 0.17±0.03b | 0.25±0.04a |
光合能力 An-max (µmol·m-2·s-1) | 41.16±3.12b | 50.85±6.24a |
饱和CO2浓度 I-sat (µmol·mol-1) | 610.93±53b | 890.14±74a |
CO2补偿点 Γ (µmol·mol-1) | 56.51±3.18a | 51.66±2.12b |
光呼吸速率 Rp (mol·m-2·s-1) | 8.74±0.09a | 11.40±0.24b |
表3
不同生育时期冀麦5265和冀麦5265yg旗叶的光合特性"
生育时期 Growth stage | 材料 Material | 净光合速率 Pn (µmol·m-2·s-1) | 气孔导度 Gs (mmol·m-2·s-1) | 胞间CO2浓度 Ci (µmolmol-1) | 蒸腾速率 Tr (mmol·m-2·s-1) |
---|---|---|---|---|---|
拔节期 Jointing stage | 冀麦5265 Jimai5265 | 10.67±0.99 | 0.13±0.02 | 245.07±43.51 | 3.65±0.68 |
冀麦5265yg Jimai5265yg | 13.82±1.81* | 0.14±0.06 | 249.93±38.02 | 4.00±1.18 | |
开花期 Flowering stage | 冀麦5265 Jimai5265 | 20.95±1.37 | 0.38±0.06 | 286.92±17.33 | 7.59±0.62 |
冀麦5265yg Jimai5265yg | 25.63±1.02* | 0.66±0.13* | 306.59±14.86* | 8.54±0.43* | |
灌浆期 Filling stage | 冀麦5265 Jimai5265 | 15.89±0.77 | 0.27±0.05 | 98.25±12.67 | 6.12±0.69 |
冀麦5265yg Jimai5265yg | 16.93±1.05* | 0.32±0.05 | 109.40±6.88 | 7.34±0.92* |
表4
野生型冀麦5265和突变体冀麦5265yg的叶绿素荧光动力学参数"
参数 Parameter | 拔节期 Jointing stage | 开花期Flowering stage | 灌浆期Filling stage | |||
---|---|---|---|---|---|---|
冀麦5265 Jimai5265 | 冀麦5265yg Jimai5265yg | 冀麦5265 Jimai5265 | 冀麦5265yg Jimai5265yg | 冀麦5265 Jimai5265 | 冀麦5265yg Jimai5265yg | |
F0 | 0.331±0.009 | 0.201±0.014** | 0.350±0.015 | 0.315±0.016* | 0.394±0.010 | 0.335±0.013* |
F0' | 0.233±0.005 | 0.186±0.005** | 0.318±0.012 | 0.291±0.017 | 0.380±0.011 | 0.347±0.016 |
Fm' | 0.477±0.012 | 0.633±0.039** | 1.305±0.056 | 1.293±0.141 | 1.514±0.065 | 1.362±0.132 |
Fv/Fm | 0.729±0.009 | 0.758±0.014* | 0.831±0.007 | 0.841±0.010* | 0.817±0.008 | 0.817±0.006 |
ΦqP | 0.306±0.030 | 0.681±0.040** | 0.756±0.010 | 0.775±0.015* | 0.748±0.011 | 0.744±0.014 |
ΦPSII | 0.322±0.030 | 0.486±0.039** | 0.572±0.041 | 0.611±0.029 | 0.578±0.027 | 0.616±0.008* |
qP | 0.630±0.073 | 0.690±0.054 | 0.773±0.054 | 0.789±0.040 | 0.772±0.028 | 0.827±0.019 |
NPQ | 1.566±0.128 | 0.323±0.206** | 0.601±0.089 | 0.533±0.088 | 0.151±0.066 | 0.070±0.033** |
qL | 0.456±0.083 | 0.400±0.067 | 0.459±0.075 | 0.462±0.064 | 0.461±0.034 | 0.550±0.043 |
表6
不同处理条件下冀麦5265和冀麦5265yg叶片光合指标的比较"
处理 Treatment | 材料 Material | 净光合速率 Pn (µmol·m-2·s-1) | 气孔导度 Gs (mmol·m-2·s-1) | 胞间CO2浓度 Ci (µmol·mol-1) | 蒸腾速率 Tr (mmol·m-2·s-1) |
---|---|---|---|---|---|
正常光照 Normal conditions | 冀麦5265 Jimai5265 | 20.95±1.37 | 0.38±0.06 | 286.92±17.33 | 7.59±0.62 |
冀麦5265yg Jimai5265yg | 25.63±1.02* | 0.66±0.13* | 306.59±14.86 | 8.54±0.43* | |
遮阴10天 Shade 10 days | 冀麦5265 Jimai5265 | 16.61±1.28 | 0.28±0.04 | 281.26±13.82 | 5.59±0.78 |
冀麦5265yg Jimai5265yg | 15.51±1.38 | 0.22±0.07 | 260.59±31.60 | 5.16±1.36 | |
恢复3天 Recover 3 days | 冀麦5265 Jimai5265 | 24.27±1.98 | 0.56±0.14 | 260.04±20.35 | 4.37±1.21 |
冀麦5265yg Jimai5265yg | 29.42±5.03* | 0.51±0.27 | 217.34±70.67 | 3.07±0.95* | |
抗坏血酸处理 AsA treatment | 冀麦5265 Jimai5265 | 25.90±1.01 | 0.57±0.09 | 295.04±15.31 | 9.31±0.25 |
冀麦5265yg Jimai5265yg | 14.47±1.53* | 0.33±0.11* | 284.91±24.85 | 8.15±1.12* | |
二硫苏糖醇处理 DTT treatment | 冀麦5265 Jimai5265 | 11.46±2.65 | 0.32±0.11 | 306.34±24.85 | 6.94±1.20 |
冀麦5265yg Jimai5265yg | 17.51±2.52* | 0.48±0.15* | 294.25±20.28 | 10.10±1.09* |
[36] | 黄小辉, 冯大兰, 刘芸, 朱恒星, 陈道静, 耿养会. 模拟石漠化异质生境中桑树的生长和叶绿素荧光特性. 北京林业大学学报, 2016, 38(10):50-58. |
HUANG X H, FENG D L, LIU Y, ZHU H X, CHEN D J, GENG Y H. Growth and chlorophyll fluorescence characteristics of mulberry trees in simulated environment of heterogeneous habitats of a rocky desertification area. Journal of Beijing Forestry University, 2016, 38(10):50-58. (in Chinese) | |
[37] |
AGARIE S, MIURA A, SUMIKURA R, TSUKAMOTO S, NOSE A, ARIMA S, MATAUOKA M, MIYAO-TOKUTOMI M. Overexpression of C4PEPC caused O-2-insensitive photosynthesis in transgenic rice plants. Plant Science, 2002, 162(2):257-265.
doi: 10.1016/S0168-9452(01)00572-6 |
[38] |
欧立军. 水稻叶色突变体的高光合特性. 作物学报, 2011, 37(10):1860-1867.
doi: 10.3724/SP.J.1006.2011.01860 |
OU L J. High photosynthetic efficiency of leaf colour mutant of rice (Oryza sativa L.). Acta Agronomica Sinica, 2011, 37(10):1860-1867. (in Chinese)
doi: 10.3724/SP.J.1006.2011.01860 |
|
[39] |
RUBAN A V. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature, 2007, 450(7169):575-578.
doi: 10.1038/nature06262 |
[1] |
CHEN H, CHENG Z J, MA X D, WU H, LIU Y L, ZHOU K N, CHEN Y L, MA W W, BI J C, ZHANG X, GUO X P, WANG J L, LEI C L, WU F Q, LIN Q B, LIU Y Q, LIU L L, JIANG L. A knockdown mutation of yellow-green leaf2 blocks chlorophyll biosynthesis in rice. Plant Cell Reports, 2013, 32(12):1855-1867.
doi: 10.1007/s00299-013-1498-y |
[2] | 曹莉. 一个新的小麦黄化突变体研究[D]. 杨凌: 西北农林科技大学, 2007. |
CAO L. Characterization and genetics of a novel aurea mutant in wheat[D]. Yangling: Northwest A&F University, 2007. (in Chinese) | |
[3] | 李宁. 小麦黄绿突变体特性研究与遗传分析[D]. 北京: 中国农业科学院, 2012. |
LI N. Characterization and genetic analysis of yellow green mutants in wheat[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese) | |
[4] | 李倩倩. 小麦白斑突变体I30的特征特性及遗传分析[D]. 杨凌: 西北农林科技大学, 2017. |
[40] |
MASAHIRO I, NOZOMU U, FUMIHIKO S, TSUYOSHI E. Physiological functions of PsbS-dependent and PsbS-independent NPQ under naturally fluctuating light conditions. Plant and Cell Physiology, 2014, 55(7):1286-1295.
doi: 10.1093/pcp/pcu069 |
[4] | LI Q Q. Characteristic and genetic analysis of common wheat mutant I30 with white stripe pattern[D]. Yangling: Northwest A&F University, 2017. (in Chinese) |
[5] | CAMPBELL B W, MANI D, CURTIN S J, SLATTERY R A, MICHNO J M, ORT D R, SCHAUS P J, PALMER R G, ORF J H, STUPAR R M. Identical substitutions in magnesium chelatase paralogs result in chlorophyll-deficient soybean mutants. G3 Genes Genomes Genetics, 2015, 5(1):123-131. |
[6] | 孔可可, 许孟歌, 刘美凤, 孔杰杰, 盖钧镒, 赵团结. 大豆芽黄新突变体 vl-1的光合特性与基因定位. 核农学报, 2018, 32(5):840-847. |
KONG K K, XU M G, LIU M F, KONG J J, GAI J Y, ZHAO T J. Identification and fine mapping of a new virescent mutant vl-1 in soybean. Journal of Nuclear Agricultural Sciences, 2018, 32(5):840-847. (in Chinese) | |
[7] | 钟世宜, 魏海忠, 王红红, 赵燕, 徐长利, 韩帅, 刘保申. 玉米白化突变体As-81647的鉴定及基因定位. 山东农业科学, 2013, 45(10):12-15. |
ZHONG S Y, WEI H Z, WANG H H, ZHAO Y, XU C L, HAN S, LIU B S. Identification and molecular mapping of an albino mutant gene As-81647 in maize (Zea mays L.). Shandong Agricultural Sciences, 2013, 45(10):12-15. (in Chinese) | |
[8] | 江媛, 何筠, 范术丽, 俞嘉宁, 宋美珍. 棉花芽黄突变体10个叶绿体蛋白编码基因RNA编辑位点的测定及分析. 棉花学报, 2011, 23(1):3-9. |
JIANG Y, HE Y, FAN S L, YU J N, SONG M Z. The identification and analysis of RNA editing sites of 10 chloroplast protein-coding genes from virescent mutant of Gossypium hirsutum. Cotton Science, 2011, 23(1):3-9. (in Chinese) | |
[9] | 宋明梅, 范术丽, 庞朝友, 魏恒玲, 喻树迅, 宋美珍. 棉花芽黄材料主要光合特性和农艺性状的研究. 棉花学报, 2015, 26(6):531-538. |
SONG M M, FAN S L, PANG C Y, WEI H L, YU S X, SONG M Z. Research on the main photosynthetic characteristics and agronomic traits in virescent cotton materials. Cotton Science, 2015, 26(6):531-538. (in Chinese) | |
[10] | 孙捷音, 张年辉, 杜林方. 油菜叶绿素b减少突变体 Cr3529叶绿素生物合成的研究. 西北植物学报, 2007, 27(10):1962-1966. |
SUN J Y, ZHANG N H, DU L F. Chlorophyll biosynthesis in a chlorophyll b deficient oilseed rape mutant cr3529. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(10):1962-1966. (in Chinese) | |
[11] | 殷家明, 杨惠娟, 彭柳, 黄梦珠, 唐章林, 李加纳, 李超. 甘蓝型油菜叶色黄化突变体Bn.el1研究. 西南大学学报(自然科学版), 2016, 38(5):1-6. |
YIN J M, YANG H J, PENG L, HUANG M Z, TANG Z L, LI J N, LI C. Preliminary research on the etiolation leaf-color mutant Bn. el1 in Brassica Napus. Journal of Southwest University (Natural Science Edition), 2016, 38(5):1-6. (in Chinese) | |
[12] |
BRAUMANN I, STEIN N, HANSSO M. Reduced chlorophyll biosynthesis in heterozygous barley magnesium chelatase mutants. Plant Physiology and Biochemistry, 2014, 78:10-14.
doi: 10.1016/j.plaphy.2014.02.004 |
[13] |
QIN D D, DONG J, XU F C, GUO G G, GE S T, XU Q, XU Y X, LI M F. Characterization and fine mapping of a novel barley stage green-revertible albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing. BMC Genomics, 2015, 16(1):838.
doi: 10.1186/s12864-015-2015-1 |
[14] |
AWAN M A, KONZAK C, RUTGER J. Mutagenic effects of sodium azide in rice. Crop Science, 1980, 20:663-668.
doi: 10.2135/cropsci1980.0011183X002000050030x |
[15] | SHI J Q, WANG Y Q, GUO S, MA L, WANG Z W, ZHU X Y, SANG X C, LING Y H, WANG N, ZHAO F M, HE G H. Molecular mapping and candidate gene analysis of a yellow-green leaf 6 (ygl6) mutant in rice. Crop Science, 2015, 45(4):S41. |
[16] |
MA X Z, SUN X Q, LI C M, HUAN R, SUN C H, WANG Y, XIAO F L, WANG Q, CHEN P R, MA F R, ZHANG K, WANG P R, DENG X J. Map-based cloning and characterization of the novel yellow-green leaf gene ys83 in rice (Oryza sativa). Plant Physiology and Biochemistry, 2017, 111:1-9.
doi: 10.1016/j.plaphy.2016.11.007 |
[17] |
MEI J S, LI F F, LIU X R, HU G C, FU Y P, LIU W Z. Newly identified CSP41b gene localized in chloroplasts affects leaf color in rice. Plant Science, 2017, 256:39-45.
doi: 10.1016/j.plantsci.2016.12.005 |
[18] |
GUAN H Y, XU X B, HE C M, LIU C X, LIU Q, DONG R, LIU T S, WANG L M. Fine mapping and candidate gene analysis of the leaf-color gene ygl-1 in maize. PLoS ONE, 2016, 11(4):e0153962.
doi: 10.1371/journal.pone.0153962 |
[19] |
SHI D Y, ZHENG X, LI L, LIN W H, XIE W J, YANG J P, CHEN S J, JIN W W. Chlorophyll deficiency in the maize elongated mesocotyl2 mutant is caused by a defective heme oxygenase and delaying grana stacking. PLoS ONE, 2013, 8(11):e80107.
doi: 10.1371/journal.pone.0080107 |
[20] |
XING A Q, WILLIAMS M E, BOURETT T M, HU W N, HOU Z L, MEELEY R B, JAQUETH J, DAM T, LI B L. A pair of homoeolog ClpP5 genes underlies a virescent yellow-like mutant and its modifier in maize. Plant Journal, 2014, 79(2):192-205.
doi: 10.1111/tpj.12568 |
[21] |
LI W, TANG S, ZHANG S, SHAN J G, TANG C J, CHEN Q N, JIA G Q, HAN Y H, ZHI H, DIAO X M. Gene mapping and functional analysis of the novel leaf color gene SiYGL1 in foxtail millet (Setaria italica (L.) P. Beauv). Physiologia Plantarum, 2015, 157(1):24-37.
doi: 10.1111/ppl.2016.157.issue-1 |
[22] |
WANG Y K, HE Y J, YANG M, HE J B, XU P, SHAO M Q, CHU P, GUAN R Z. Fine mapping of a dominant gene conferring chlorophyll- deficiency in Brassica napus. Scientific Reports, 2016, 6:31419.
doi: 10.1038/srep31419 |
[23] | WANG R, YANG F, ZHANG X Q, WU D X, TAN C, WESTCOTT S, BROUGHTON S, LI C D, ZHANG W Y, XU Y H. Characterization of a thermo-inducible chlorophyll-deficient mutant in barley. Plant Science, 2017, 14(8):1936. |
[24] | 秦丹丹, 李梅芳, 许甫超, 徐晴, 葛双桃, 董静. 大麦黄绿叶色突变体ygl的农艺性状及其调控基因初步定位. 麦类作物学报, 2019, 39(6):653-658. |
QIN D D, LI M F, XU B C, XU Q, GE S T, DONG J. Analysis of agronomic characters and preliminary mapping of regulatory genes of a barley yellow-green leaf mutant ygl. Journal of Triticeae Crops, 2019, 39(6):653-658. (in Chinese) | |
[25] |
ZHANG L L, LIU C, AN X Y, WU H Y, FENG Y, WANG H, SUN D J. Identification and genetic mapping of a novel incompletely dominant yellow leaf color gene, Y1718, on chromosome 2BS in wheat. Euphytica, 2017, 213(7):141.
doi: 10.1007/s10681-017-1894-4 |
[26] |
WU H Y, SHI N R, AN X Y, LIU C, FU H F, CAO L, FENG Y, SUN D J, ZHANG L L. Candidate genes for yellow leaf color in common wheat (Triticum aestivum L.) and major related metabolic pathways according to transcriptome profiling. International Journal of Molecular Sciences, 2018, 19(6):1594.
doi: 10.3390/ijms19061594 |
[27] | 茹广欣, 刘小囡, 朱秀红, 张龙冲, 王鋆瑞, 周霜晴. 泡桐黄化突变体生理特性分析. 南京林业大学学报(自然科学版), 2017, 41(4):181-185. |
RU G X, LIU X N, ZHU X H, ZHANG L C, WANG J R, ZHOU S Q. Physiological characteristic analysis of etiolation mutant in Paulownia fortnnei. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(4):181-185. (in Chinese) | |
[28] | 杨小苗, 吴新亮, 刘玉凤, 李天来, 齐明芳. 一个番茄EMS叶色黄化突变体的叶绿素含量及光合作用. 应用生态学报, 2018, 29(6):1983-1989. |
YANG X M, WU X L, LIU Y F, LI T L, QI M F. Analysis of chlorophyll and photosynthesis of a tomato chlorophyll-deficient mutant induced by EMS. Chinese Journal of Applied Ecology, 2018, 29(6):1983-1989. (in Chinese) | |
[29] | 胡亮亮, 赵子瑶, 张海强, 陈菲帆, 张朝文, 戎福喜, 陈鹏, 李玉红. 一个新的黄瓜叶色突变体的光合特性分析. 西北农业学报, 2018, 27(11):1622-1628. |
HU L L, ZHAO Z Y, ZHANG H Q, CHEN F F, ZHANG C W, WU F X, CHEN P, LI Y H. Photosyntheic characteristic analysis of new leaf color mutant in cucumber. Acta Agriculturae Boreali-Occidentalia Sinica, 2018, 27(11):1622-1628. (in Chinese) | |
[30] | 曹莉, 王辉, 孙道杰, 冯毅, 李学军, 闵东红. 小麦黄化突变体类囊体蛋白组分及叶绿素的合成特性. 麦类作物学报, 2010, 30(4):638-643. |
CAO L, WANG H, SUN D J, FENG Y, LI X J, MIN D H. Chloroplast thylakoid protein composition and characteristics of chlorophyll biosynthesis in a novel aurea mutant of wheat. Journal of Triticeae Crops, 2010, 30(4):638-643. (in Chinese) | |
[31] |
DAI X B, XU X M, LU W. Photoinhibition characterristics of a low chlorophyll b mutant of high yield rice. Photosynthetica, 2003, 41:57-60.
doi: 10.1023/A:1025804327776 |
[32] |
ZHOU X S, SHEN S Q, WU D X, SUN J W, SHU Q Y. Introduction of a xantha mutation for testing and increasing varietal purity in hybrid rice. Field Crops Research, 2006, 96(1):71-79.
doi: 10.1016/j.fcr.2005.05.008 |
[33] |
DENG X J, ZHANG H Q, WANG Y, HE F, LIU J L, XIAO X, SHU Z F, LI W, WANG G H, WANG G L. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS ONE, 2014, 9(6):e99564.
doi: 10.1371/journal.pone.0099564 |
[34] | LICHTENTHALER H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148:350-382. |
[35] |
叶子飘. 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 2010, 34(6):727-740
doi: 10.3773/j.issn.1005-264x.2010.06.012 |
YE Z P. A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 2010, 34(6):727-740. (in Chinese)
doi: 10.3773/j.issn.1005-264x.2010.06.012 |
[1] | 彭海霞, 卡得艳, 张天星, 周梦蝶, 吴林楠, 辛转霞, 赵惠贤, 马猛. 过量表达小麦TaCYP78A5增加花器官的大小[J]. 中国农业科学, 2023, 56(9): 1633-1645. |
[2] | 魏永康, 杨天聪, 臧少龙, 贺利, 段剑钊, 谢迎新, 王晨阳, 冯伟. 基于无人机多光谱影像特征融合的小麦倒伏监测[J]. 中国农业科学, 2023, 56(9): 1670-1685. |
[3] | 张旭, 韩金妤, 李晨晨, 张丹丹, 吴启蒙, 刘胜杰, 焦韩轩, 黄硕, 李春莲, 王长发, 曾庆东, 康振生, 韩德俊, 吴建辉. 结合基因关联和转录组分析鉴定小麦成株期抗条锈病位点YrZ501-2BL的候选基因[J]. 中国农业科学, 2023, 56(8): 1429-1443. |
[4] | 韩紫璇, 房静静, 武雪萍, 姜宇, 宋霄君, 刘晓彤. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应[J]. 中国农业科学, 2023, 56(8): 1503-1514. |
[5] | 马胜兰, 况福虹, 林洪羽, 崔俊芳, 唐家良, 朱波, 蒲全波. 秸秆还田量对川中丘陵冬小麦-夏玉米轮作体系土壤物理特性的影响[J]. 中国农业科学, 2023, 56(7): 1344-1358. |
[6] | 南瑞, 杨玉存, 石芳慧, 张礼宁, 米彤茜, 张立强, 李春艳, 孙风丽, 奚亚军, 张超. 小麦源库优异种质的鉴定与源库类型的划分[J]. 中国农业科学, 2023, 56(6): 1019-1034. |
[7] | 常春义, 曹元, Ghulam Mustafa, 刘红艳, 张羽, 汤亮, 刘兵, 朱艳, 姚霞, 曹卫星, 刘蕾蕾. 白粉病对小麦光合特性的影响及病害严重度的定量模拟[J]. 中国农业科学, 2023, 56(6): 1061-1073. |
[8] | 王箫璇, 张敏, 张鑫尧, 魏鹏, 柴如山, 张朝春, 张亮亮, 罗来超, 郜红建. 不同磷肥对砂姜黑土和红壤磷库转化及冬小麦磷素吸收利用的影响[J]. 中国农业科学, 2023, 56(6): 1113-1126. |
[9] | 王脉, 董清峰, 高珅奥, 刘德政, 卢山, 乔朋放, 陈亮, 胡银岗. 小麦苗期根系性状的全基因组关联分析与优异位点挖掘[J]. 中国农业科学, 2023, 56(5): 801-820. |
[10] | 樊志龙, 胡发龙, 殷文, 范虹, 赵财, 于爱忠, 柴强. 干旱灌区春小麦水分利用特征对绿肥与麦秸协同还田的响应[J]. 中国农业科学, 2023, 56(5): 838-849. |
[11] | 郭燕, 井宇航, 王来刚, 黄竞毅, 贺佳, 冯伟, 郑国清. 基于无人机影像特征的冬小麦植株氮含量预测及模型迁移能力分析[J]. 中国农业科学, 2023, 56(5): 850-865. |
[12] | 王建锋, 成嘉欣, 舒伟学, 张艳茹, 王晓杰, 康振生, 汤春蕾. 小麦条锈菌效应蛋白Hasp83在条锈菌致病性中的功能分析[J]. 中国农业科学, 2023, 56(5): 866-878. |
[13] | 董秀, 张燕, MUNYAMPIRWA Tito, 陶海宁, 沈禹颖. 长期保护性耕作对黄土高原旱作农田土壤碳含量及转化酶活性的影响[J]. 中国农业科学, 2023, 56(5): 907-919. |
[14] | 丁锦峰, 徐东忆, 丁永刚, 朱敏, 李春燕, 朱新开, 郭文善. 栽培模式对稻茬小麦籽粒产量、氮素吸收利用和群体质量的影响[J]. 中国农业科学, 2023, 56(4): 619-634. |
[15] | 陈吉浩, 周界光, 曲翔汝, 王素容, 唐华苹, 蒋云, 唐力为, $\boxed{\hbox{兰秀锦}}$, 魏育明, 周景忠, 马建. 四倍体小麦胚大小性状QTL定位与分析[J]. 中国农业科学, 2023, 56(2): 203-216. |
|