中国农业科学 ›› 2019, Vol. 52 ›› Issue (11): 1961-1969.doi: 10.3864/j.issn.0578-1752.2019.11.010

• 园艺 • 上一篇    下一篇

山茶芽变花色与花青苷的关系

李辛雷,殷恒福,范正琪,李纪元   

  1. 中国林业科学研究院亚热带林业研究所,杭州 311400
  • 收稿日期:2018-12-29 接受日期:2019-03-05 出版日期:2019-06-01 发布日期:2019-06-11
  • 作者简介:李辛雷,Tel:15968855095;E-mail:lixinlei2020@163.com
  • 基金资助:
    中央级公益性科研院所基本科研业务费专项资金项目(CAFYBB2017MB007);国家自然科学基金(31470697);林业公益性行业科研专项经费(201504707)

The Relationship Between Anthocyanins and Flower Colors of Bud Mutation in Camellia japonica

LI XinLei,YIN HengFu,FAN ZhengQi,LI JiYuan   

  1. Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400
  • Received:2018-12-29 Accepted:2019-03-05 Online:2019-06-01 Published:2019-06-11

摘要:

目的 研究山茶芽变花色与花青苷的关系,为山茶花色的芽变育种提供科学依据。方法 按照CIE L* a* b*表色系法测量山茶及其芽变品种的花色,利用高效液相色谱-光电二极管阵列检测(HPLC-DAD)和超高效液相色谱-四极杆-飞行时间质谱(UPLC-Q-TOF-MS)联用技术定性定量分析其花瓣中花青苷成分与含量,运用多元线性回归方法研究花青苷与花色之间的关系。结果 山茶及其芽变品种花瓣中共检测到7种花青苷,分别是矢车菊素-3-O-β-半乳糖苷(Cy3Ga)、矢车菊素-3-O-β-葡萄糖苷(Cy3G)、矢车菊素-3-O-[6-O-(E)-咖啡酰]-β-半乳糖苷(Cy3GaECaf)、矢车菊素-3-O-[6-O-(E)-咖啡酰]-β-葡萄糖苷(Cy3GECaf)、矢车菊素-3-O-[6-O-(Z)-p-香豆酰]-β-葡萄糖苷(Cy3GZpC)、矢车菊素-3-O-[6-O-(E)-p-香豆酰]-β-半乳糖苷(Cy3GaEpC)和矢车菊素-3-O-[6-O-(E)-p-香豆酰]-β-葡萄糖苷(Cy3GEpC)。山茶各系列芽变品种中,白色花瓣中均未检测到花青苷,红色花瓣中花青苷成分与粉色花瓣相同,但红色花瓣中各成分含量及花青苷总量均远高于粉色花瓣;红色和粉色花瓣中主要花青苷成分为Cy3G和Cy3GEpC;红色花瓣中Cy3G和Cy3Ga所占比例大于粉色花瓣,而Cy3GEpC等花青苷比例小于粉色花瓣。结论 山茶各系列芽变品种中各种花青苷含量及花青苷总量越大,花瓣红色越深;Cy3G、Cy3Ga和Cy3GEpC是决定山茶芽变花色的主要花青苷成分,其含量的积累增加花瓣红色程度。

关键词: 山茶, 芽变, 花色, 花青苷, 含量, 比例

Abstract:

【Objective】 The object of this study was to determine the relationship between anthocyanins and flower colors of bud mutation in Camellia japonica, so as to provide the scientific basis for the bud mutation breeding of flower colors in C. japonica. 【Method】 Flower colors in C. japonica cultivars and their bud mutation cultivars were measured by CIE L*a*b* scale, and anthocyanin components and contents were measured by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) and ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q-T OF-MS). The relationship between flower colors and anthocyanins was explored by multiple liner regression analyses. 【Result】 Seven anthocyanins were detected in C. japonica cultivars and their bud mutation cultivars, which were cyanidin-3-O-β-galactoside (Cy3Ga),cyanidin-3-O-β-glucoside (Cy3G),cyanidin-3-O-(6-O-(E)-caffeoyl)-β-galactoside (Cy3GaECaf), cyanidin-3-O-(6-O-(E)- caffeoyl)-β-glucoside (Cy3GECaf), cyanidin-3-O-(6-O-(Z)-p-coumaroyl)-β-glucoside (Cy3GZpC), cyanidin-3-O-(6-O-(E)-p- coumaroyl)-β-galactoside (Cy3GaEpC) and cyanidin-3-O-(6-O-(E)-p-coumaroyl)-β-glucoside (Cy3GEpC). Among the bud mutation cultivars of C. japonica, anthocyanins were not detected in white petals, and anthocyanins in red petals were identical with that in pink petals, but the contents of anthocyanin components and total anthocyanin in red petals were far higher than that in pink petals. The main anthocyanin components were Cy3G and Cy3GEpC in red and pink petals. The proportion of Cy3G and Cy3Ga in red petals were larger than that in pink petals, while the proportion of else anthocyanins, such as Cy3GEpC, were smaller than that in pink petals.【Conclusion】 Among the bud mutation cultivars of C. japonica, the greater the contents of various anthocyanin components and total anthocyanin were, the deeper the red of petal were. Cy3G, Cy3Ga and Cy3GEpC were the main anthocyanins which determined the flower colors of bud mutation in C. japonica, and the accumulation of their contents enhanced the red color of petals.

Key words: Camellia japonica, bud mutation, flower color, anthocyanin, content, proportion